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1. Introduction

Ultrafilters and MAD families2 play a fundamental role on infinite combinatorics, set 
theoretic topology and other branches of mathematics. For this reason, it is interesting 
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to study the relationship between these two objects. In this paper, we will focus on the 
cardinal invariants associated with each of them. The ultrafilter number u is defined as 
the smallest size of a base of an ultrafilter, and the almost disjointness number a is the 
smallest size of a MAD family. The consistency of the inequality a < u is well known and 
easy to prove, in fact, it holds in the Cohen, random, and Silver models, among many 
others. Proving the consistency of the inequality u < a is much harder and used to be 
an open problem for a long time; In fact, it follows by the theorems of Hrušák, Moore 
and Džamonja that the inequality u < a can not be obtained by using countable support 
iteration of proper Borel partial orders (see theorem 6.6 and theorem 7.2 of [52]). The 
consistency of u < a was finally established by Shelah in [60] (see also [11]) where he 
proved the following theorem:

Theorem 1 (Shelah). Let V be a model of GCH, κ a measurable cardinal and μ, λ two 
regular cardinals such that κ < μ < λ. There is a c.c.c. forcing extension of V that 
satisfies μ = b = d = u and λ = a = c. In particular, CON(ZFC + “there is a measurable 
cardinal”) implies CON(ZFC + “u < a”).

This theorem was one of the first results proved using “template iterations”, which is 
a very powerful method that has been very useful and has continued applications to this 
day (see for example, [9], [11], [10], [25], [27], [45]). In spite of the beauty of this result, 
it leaves open the following questions:

Problem 2 (Shelah [59]). Does CON(ZFC) imply CON(ZFC + “u < a”)?

Problem 3 (Brendle [11]). Is it consistent that ω1 = u < a?

In this paper, we will provide a positive answer to both questions, by proving (without 
appealing to large cardinals) that every MAD family can be destroyed by a proper forcing 
that preserves P -points. We will also present an alternative proof of the consistency of 
u < s, which was proved first by Blass and Shelah in [7] (see also [3]).

Our motivation comes from the theorems of Shelah that establishes that the state-
ments “ω1 = b = a < s = ω2” and “ω1 = b < a = s = ω2” are consistent (see [57], 
or [58]). After these impressive results, different models of ω1 = b < a = ω2 had been 
constructed (see for example [20], [12], [26] and [8]). In every case, the forcings used add 
Cohen reals, so no ultrafilter is preserved.

In order to construct the models of b < s and b < a, Shelah used a creature forcing 
(see [57], [58] and [2]). In [15] Brendle and Raghavan found a simpler representation of 
Shelah forcing as a two step iteration, which we will briefly describe (more details of the 
forcing will be studied in the next section).

The most natural way to increase the splitting number is to diagonalize an ultrafilter. 
In order to build a model of b < s, it is enough to construct (or force) an ultrafilter that 
can be diagonalized without adding dominating reals (even in the iteration). Denote by 
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Fσ the set of all Fσ-filters3 on ω. If F , G ∈ Fσ we define F ≤ G if G ⊆ F . It is not hard to 
see that Fσ naturally adds an ultrafilter Ugen. The reader wishing to learn more about 
Fσ may consult [41] and [49]. It turns out that the forcing of Shelah is equivalent to 
the two step iteration Fσ ∗ M(U̇gen), where M(Ugen) is the Mathias forcing relative to 
Ugen (see [15]). It can be proved that M(Ugen) does not add dominating reals, even when 
iterated (see [15] or [28]).

The method to build a model of b < a is similar: Given a MAD family A, denote 
by Fσ (A) the set of all Fσ-filters F such that F ∩ I (A) = ∅ (where I (A) is the ideal 
generated by A). Once again, we order Fσ (A) with inclusion. It is easy to see that Fσ (A)
naturally adds an ultrafilter Ugen (A), furthermore, diagonalizing U̇gen (A) destroys the 
maximality of A. In this case, it can be proved that Cω1 ∗ Fσ ∗ M(U̇gen (A)) does not 
add dominating reals, even when iterated (Cω1 denotes the forcing for adding ω1-Cohen 
reals), see [15] or [28]. We want to point out that both the forcing of Shelah ([57], [58]) 
and the forcing used by Brendle in [8] require adding Cohen reals in an explicit way. Our 
work shows that adding the Cohen reals was in fact not needed.

We take a similar approach in order to build our model of u< s. We will first force with 
Fσ and then we will diagonalize U̇gen. The difference, is that instead of using Mathias 
forcing, we will use a variant of Miller forcing. The same technique will be used to build 
the model of ω1 = u < a. Given a MAD family A, we will force with Fσ (A) and then 
diagonalize in the same way as before. In both cases, we will prove that the forcings 
preserve all P -points of the ground model.

There is a huge body of work regarding the cardinal invariants b, s, d, u, and a; To pro-
vide some more historical context to this work, as was mentioned before, the story began 
when Shelah ([58]) constructed models of ω1 = b < s and ω1 = b < a = s. To achieve this, 
Shelah used a countable support iteration of creature forcings. In [8], Brendle used c.c.c.
forcings for constructing models of κ = b < a = κ+, where κ is any uncountable regular 
cardinal, and later in [26] Fischer and Steprāns constructed models of κ = b < s = κ+, 
where again κ can be any uncountable regular cardinal. In [12] Brendle and Fischer used 
matrix iterations to prove that for any regular cardinals κ < λ, it is consistent that 
κ = b = a < s = λ, and if κ is bigger than a measurable cardinal, then it is consistent 
that κ = b < a = s = λ. The consistency of ω1 < d < a and ω1 < u < a was obtained 
by Shelah in [60] where he developed the technique of forcing along a template (see 
also [9] and [11]). Finally, in [25] Fischer and Mejía proved that it is consistent that 
ω1 < s < b < a (see also [46] and [23]).

There are still many interesting open questions remaining:

Problem 4 (Roitman). Does d = ω1 imply that a = ω1?

Problem 5 (Brendle and Raghavan). Does b = s = ω1 imply that a = ω1?

3 We view filters as subspaces of 2ω , the notion of Borel or Fσ is taken using the usual topology on 2ω .
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Note that a positive solution to the question of Brendle and Raghavan would provide 
a positive solution to the problem of Roitman.

2. Preliminaries and notation

Let f, g ∈ ωω, define f ≤ g if and only if f (n) ≤ g (n) for every n ∈ ω and f ≤∗ g

if and only if f (n) ≤ g (n) holds for all n ∈ ω except finitely many. We say a family 
B ⊆ ωω is unbounded if B is unbounded with respect to ≤∗. A family D ⊆ ωω is a 
dominating family if for every f ∈ ωω, there is g ∈ D such that f ≤∗ g. The bounding 
number b is the size of the smallest unbounded family and the dominating number d is 
the smallest size of a dominating family. We say that S splits X if S ∩ X and X \ S

are both infinite. A family S ⊆ [ω]ω is a splitting family if for every X ∈ [ω]ω there is 
S ∈ S such that S splits X. The splitting number s is the smallest size of a splitting 
family. A family A ⊆ [ω]ω is almost disjoint (AD) if the intersection of any two different 
elements of A is finite, a MAD family is a maximal almost disjoint family. By cov(M)
we denote the smallest size of a family of meager sets that covers the Baire space. The 
reader may consult the surveys [5] for the main properties of the cardinal invariants used 
in this paper, [33] to learn more about almost disjoint families and [32] for a survey on 
filters and ideals.

In this paper, a tree is a set of sequences closed under taking restrictions (i.e. p is a 
tree if whenever s ∈ p and n < |s| then s � n ∈ p). If s, t ∈ ω<ω, by s�t we denote 
the concatenation of s and t. If n ∈ ω, we will often write s�n instead of s� 〈n〉. In 
this paper, we will say that s ∈ p is a splitting node if sucp (s) = {n | s�n ∈ p} is 
infinite. We say that a splitting node s ∈ p is the stem of p (denoted by stem (p) in 
case it exists) if every predecessor of s has exactly one immediate successor. If p is a 
tree, the set of branches of p is defined as [p] = {x | ∀n (x � n ∈ p)}. For every s ∈ p, 
we define the tree ps = {t ∈ p | s ⊆ t ∨ t ⊆ s}. Given s ∈ ω<ω define the cone of s as 
〈s〉 = {f ∈ ωω | s ⊆ f}.

Let I be an ideal on ω, F a filter on ω and A a MAD family. Define4 I+ = ℘ (ω) \I
i.e. the subsets of ω that are not in I. We say that a forcing notion Pdestroys I if P adds 
an infinite subset of ω that is almost disjoint with every element of I. We say that P
diagonalizes F if P adds an infinite set almost contained in every element of F . It is easy 
to see that P destroys I if and only if P diagonalizes the filter I∗ = {ω \A | A ∈ I}. By 
I (A) we denote the ideal generated by A (and the finite sets). We say that P destroys
A if A is no longer maximal after forcing with P . Note that P destroys A if and only if 
P destroys the ideal I (A). The following result is well known (as well as easy to prove) 
and will be frequently used:

Lemma 6. Let A be a MAD family. If B ⊆ ω, the following are equivalent:

4 By ℘ (a) we denote the powerset of a.
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1. B ∈ I (A)+.
2. There is A1 ∈ [A]ω such that |B ∩A| = ω for every A ∈ A1.

We will need to recall the definition of the Katětov order:

Definition 7. Let A and B be two countable sets, I, J be ideals on X and Y respectively 
and f : Y −→ X.

1. We say that f is a Katětov morphism from (Y,J ) to (X, I) if f−1 (A) ∈ J for every 
A ∈ I.

2. We define I ≤K J (I is Katětov smaller that J or J is Katětov above I) if there is 
a Katětov morphism from (Y,J ) to (X, I).

The reader may consult [34] for an interesting survey of the Katětov order on Borel 
ideals. The Katětov order does not play a crucial result in this article, but we include 
it in order to state some results of Sabok and Zapletal below. The nowhere dense ideal
nwd is the ideal on 2<ω where A ∈ nwd if and only if for every s ∈ 2<ω there is 
t ∈ 2<ω extending s such that no further extension of t is in A. It is easy to see that
nwd is an ideal. For every n ∈ ω we define Cn = {(n,m) | m ∈ ω} and if f : ω −→ ω

let D (f) = {(n,m) | m ≤ f(n)}. The ideal fin×fin is the ideal on ω × ω generated by 
{Cn | n ∈ ω} ∪ {D (f) | f ∈ ωω}.

If F is a filter on ω (or on any countable set) we define the Mathias forcing M (F) with 
respect to F as the set of all pairs (s,A) where s ∈ [ω]<ω and A ∈ F . If (s,A) , (t, B) ∈
M (F) then (s,A) ≤ (t, B) if the following conditions hold:

1. t is an initial segment of s.
2. A ⊆ B.
3. (s \ t) ⊆ B.

The Laver forcing L (F) with respect to F is the set of all trees p such that sucp (s) ∈ F
for every s ∈ p extending the stem of p. We say p ≤ q if p ⊆ q.

While L (F) always adds a dominating real, this may not be the case for M (F). A 
trivial example is taking F to be the cofinite filter in ω, since in this case M (F) is forcing 
equivalent to Cohen forcing. A more interesting example was found by Canjar in [18], 
where an ultrafilter whose Mathias forcing does not add dominating reals was constructed 
under d = c (see also [29]). We say that a filter F is Canjar if M (F) does not add 
dominating reals. Let F be a filter on ω. We define the filter F<ω on [ω]<ω\{∅} generated 
by 

{
[A]<ω \ {∅} | A ∈ F

}
. Note that X ∈ (F<ω)+ if and only if for every A ∈ F , there 

is s ∈ X such that s ⊆ A. It is important to emphasize that if X ∈ (F<ω)+ then by 
convention ∅ /∈ X (recall that F<ω is a filter on [ω]<ω \{∅}). In [36] Hrušák and Minami 
showed that the forcing properties of M (F) are closely related to the combinatorics of 
F<ω. They proved the following result:



6 O. Guzmán, D. Kalajdzievski / Advances in Mathematics 386 (2021) 107805
Proposition 8 ([36]). Let F be a filter on ω. The following are equivalent:

1. F is Canjar.
2. For every {Xn | n ∈ ω} ⊆ (F<ω)+ there are Yn ∈ [Xn]<ω such that 

⋃
n∈ω

Yn ∈

(F<ω)+.

In [19] it was proved that a filter is Canjar if and only if it has the Menger property 
(as a subspace of ℘ (ω)). Canjar filters have been further studied in [6], [29], [28], [24]
and [31].

We will say that a family of functions B ⊆ ωω is a b-family if the following holds:

1. Every element of B is an increasing function.
2. Given {fn | n ∈ ω} ⊆ B there is g ∈ B such that fn ≤∗ g for every n ∈ ω.
3. B is unbounded.

An example of a b-family would be a well-ordered unbounded family, another example 
is the set of all increasing functions. If B is a b-family and P is a partial order, we say 
that P preserves B if B is still unbounded after forcing with P . Note that if P is a proper 
forcing that preserves B, then B is still a b-family in the extension. We will need the 
following easy lemma:

Lemma 9. Let B be a b-family. If B =
⋃

n∈ω
Bn, then there is n ∈ ω such that Bn is cofinal 

in B (i.e. for every f ∈ B there is g ∈ Bn such that f ≤∗ g).

Proof. We will argue a proof by contradiction. Assume this is not the case, so for every 
n ∈ ω there is fn ∈ B such that fn is not bounded by any element of Bn. Since B is a 
b-family, we can find g ∈ B such that fn ≤∗ g for every n ∈ ω. Since B =

⋃
n∈ω

Bn, there 

must be m ∈ ω such that g ∈ Bm, hence fm ≤∗ g which is a contradiction. �

Given a sequence X = {Xn | n ∈ ω} ⊆ [ω]<ω \ {∅} and f ∈ ωω, we define the set Xf =⋃
n∈ω

(Xn ∩ ℘ (f (n))). Note that F is Canjar if for every sequence X = {Xn | n ∈ ω} ⊆

(F<ω)+ there is f ∈ ωω such that Xf ∈ (F<ω)+. Recall that by a theorem of Hrušák and 
Minami (see [36]), a filter F is Canjar if and only if M (F) does not add dominating reals. 
If B is a b-family, we say that F is B-Canjar if for every sequence X = {Xn | n ∈ ω} ⊆
(F<ω)+ there is f ∈ B such that Xf ∈ (F<ω)+ (such Xf is called a pseudointersection 
according to B). Note that if F is B-Canjar (for some b-family B), then F is Canjar. 
As expected, B-Canjar filters have a similar characterization as the one of Canjar. The 
following is a slight strengthening of proposition 1 of [28], which is a generalization of 
the theorem of Hrušák and Minami:
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Proposition 10. Let B be a b-family. A filter F is a B-Canjar filter if and only if M (F)
preserves B.

Proof. Assume that F does not preserve B, in other words, there is a name ġ for an 
increasing function such that 1M(F) � “ġ is an upper bound for B”. For every function 
f ∈ B let sf ∈ [ω]<ω

, nf ∈ ω and Ff ∈ F such that (sf , Ff ) � “∀i ≥ nf (f (i) <nf
ġ (i))”. 

Since B is a b-family, there are s ∈ [ω]<ω
, n ∈ ω and a cofinal family B′ ⊆ B such that 

sf = s and nf = n for every f ∈ B′.
For every m ∈ ω let Xm be the set of all t ∈ [ω \ 

⋃
s]<ω such that there is F ∈ F with 

the property that (s ∪ t, F ) decides 〈ġ (0) , . . . , ġ (m)〉 and (s ∪ t, F ) � “ġ (m) < max (t)”. 
It is easy to see that X = {Xm | m ∈ ω} is a sequence of sets in (F<ω)+. We will see 
that it has no pseudointersection according to B. Since B′ is cofinal in B, it is enough to 
show that X has no pseudointersection according to B′.

Aiming for a contradiction, assume that there is f ∈ B′ such that Xf is positive. 
Since Xf ∩ [Ff ]<ω is infinite, pick t ∈ Xf ∩ [Ff ]<ω such that t ∈ Xk ∩ ℘ (f (k)) with 
k > n. Since t ∈ Xk there is F ∈ F such that (s ∪ t, F ) � “ġ (k) ≤ max (t)” and note 
that (s ∪ t, F ) � “ġ (k) ≤ f (k)”. In this way, (s ∪ t, Fh ∩ F ) forces both “f (k) < ġ (k)” 
and “ġ (k) ≤ f (k)”, which is a contradiction.

Now assume that M (F) preserves B. Let X = 〈Xn | n ∈ ω〉 be a sequence of sets in 
(F<ω)+. Let rgen be a (V,M (F))-generic real, observe that [rgen]<ω intersect infinitely 
every member of (F<ω)+. In this way, in V [rgen] we may define an increasing function 
g : ω −→ ω such that (rgen \ n) ∩ g (n) contains a member of Xn. Since F preserves B, 
then there is f ∈ B such that f �∗ g, we will see that Xf is positive. Let F ∈ F we must 
prove that Xf ∩ [F ]<ω is not empty. Since F ∈ F , we know that rgen ⊆∗ F so there is 
k ∈ ω such that g (k) < f (k) and rgen \ k ⊆ F and hence Xf ∩ [F ]<ω �= ∅. �

Moreover, Canjar filters satisfy the following stronger property:

Lemma 11. Let B be a b-family and F a B-Canjar filter. For every family X =
{Xn | n ∈ ω} ⊆ (F<ω)+ there is f ∈ B such that for every n ∈ ω, if Yn =
{s ∈ Xn | s ⊆ [f (n− 1) , f (n))} (where f (−1) = 0) then 

⋃
n∈ω

Yn ∈ (F<ω)+.

Proof. The idea of the proof is similar to the previous one. Let rgen be a (M (F) , V )-
generic real. In V [rgen] we find an increasing function g ∈ ωω such that for every n ∈ ω, 
the following holds: rgen∩[g (n− 1) , g (n)) contains an element of Xn (where g (−1) = 0). 
Furthermore, we may assume that g is unbounded over V (this is possible since M (F)
adds an unbounded real5). Since F is B-Canjar, we can find (s,A) ∈ M (F) and f ∈ B
such that (s,A) � “f �∗ ġ”. We claim that f is the function we are looking for. Define 
Yn = {s ∈ Xn | s ⊆ [f (n− 1) , f (n))} (for every n ∈ ω) and Y =

⋃
n∈ω

Yn, we must prove 

5 It is well known that every σ-centered forcing adds an unbounded real.
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that Y ∈ (F<ω)+. Let B ∈ F , we must show that Y contains an element of B. Without 
loss of generality, we may assume that B ⊆ A. We can now find m ∈ ω, t ∈ [ω]<ω and 
C ∈ F such that the following holds:

1. max (s) < m, C ⊆ B, t ⊆ B.
2. max (s) < min (t).
3. (s ∪ t, C) ≤ (s,B).
4. There is w ∈ Xm such that (s ∪ t, C) � “w ⊆ [ġ (m− 1) , ġ (m))”.
5. (s ∪ t, C) � “ (f (m− 1) ≤ ġ (m− 1))” and (s ∪ t, C) � “ (ġ (m) < f (m))”.

Such m, t and C can be obtained since (s,B) ≤ (s,A), so (s,B) forces that ġ is an 
unbounded real that does not dominate f . Note that w ⊆ t, so w ⊆ B and (s ∪ t, C) �
“[ġ (m− 1) , ġ (m)) ⊆ [f (m− 1) , f (m))”, which implies that w ∈ Ym. This finishes the 
proof. �

3. Miller forcing based on filters

The theory of destructibility of ideals is very important in forcing theory, since many 
important forcing properties may be stated in these terms. For example, it is well known 
that a forcing P adds a dominating real if and only if P destroys fin×fin. The reader 
may consult [35], [16], [40], [37] or [42] for more on destructibility of ideals.

In order to build models where a is big and some other cardinal invariant is small, we 
need to be able to destroy a MAD family by dealing the least “damage” as possible to 
the ground model. The most well known forcings to destroy an ideal (or to diagonalize a 
filter) are the Mathias or Laver forcings relative to the ideal (filter). The following result 
is well known:

Proposition 12. Let F be a filter on ω.

1. L (F) adds a dominating real.
2. M (F) adds a Cohen real if and only if F is not a Ramsey ultrafilter.
3. If F is a Ramsey ultrafilter, then M (F) adds a dominating real.

In particular, it follows that M (F) adds either a Cohen or a dominating real. In this 
section, we will introduce a forcing relative to a filter F that in some cases, might destroy 
F without adding Cohen or dominating reals.

We say that a tree p ⊆ ω<ω is a Miller tree if the following conditions hold:

1. p consists of increasing sequences.
2. p has a stem.
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3. For every s ∈ p, there is t ∈ p such that s ⊆ t and t is a splitting node.6

Usually, Miller trees are required to satisfy the following extra condition:

4. Every node of p either is a splitting node or it has exactly one immediate successor.

However, we will not assume this extra requirement. The Miller forcing PT consists of 
all Miller trees ordered by inclusion.7 Miller forcing (also called “super perfect forcing”) 
was introduced by Miller in [50], and is one of the most useful and studied forcings for 
adding new reals (see [3], [50] or [30]). By split (p) we denote the collection of all splitting 
nodes, and by splitn (p) we denote the collection of n-splitting nodes (i.e. s ∈ splitn (p)
if s ∈ split (p) and s has exactly n-restrictions that are splitting nodes). Note that 
split0 (p) = {stem (p)}.

In [55], Sabok and Zapletal introduced the following parametrized version of Miller 
forcing8:

Definition 13. Let F be a filter. By Q (F) we denote the set of all Miller trees p ∈ PT

such that sucp (s) ∈ F+ for every splitting node s. We order Q (F) by inclusion.

Sabok and Zapletal proved some very interesting results, like the following: (the reader 
may consult [55] and [47] for the definitions of spl and the Solecki ideal S).

Proposition 14 ([55]). Let F be a filter.

1. Q (F) does not add Cohen reals if and only if nwd �K F∗ � A for every A ∈ F+.
2. If F is a Borel filter, then Q (F) preserves outer Lebesgue measure if and only if S

�K F∗ � A for every A ∈ F+.
3. If F is a Borel filter, then Q (F) does not add splitting reals if and only if spl �K

F∗ � A for every A ∈ F+.

In some cases, Q (F) may diagonalize F while in some other cases not, as can be seen 
with the following:

Lemma 15.

1. Q(fin×fin∗) does not destroy fin×fin.
2. Q(nwd∗) destroys nwd.

6 Recall that s is a splitting node of p if sucp (s) is infinite.
7 Obviously, the trees satisfying property 4 are dense in Miller forcing. However, this does not seem to be 

the case for our forcings.
8 In [55] the authors use ideals instead of filters. Evidently, this choice is superflous.
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Proof. With an easy fusion argument, it is possible to prove that Q (F) does not add 
dominating reals (for every F). Alternatively, this can be proved as follows: In [55] it 
was proved that there is a σ-ideal JF generated by closed sets such that Q (F) is forcing 
equivalent to Borel(ωω) /JF , which does not add dominating reals by Theorem 4.1.2 of 
[62]. It is well known that if a forcing destroys fin×fin, then it must add a dominating 
real. From these two facts, it follows that Q(fin×fin∗) does not destroy fin×fin. On the 
other hand, note that Q(nwd∗) adds a Cohen real and it is easy to see that any forcing 
adding a Cohen real must destroy nwd. �

We will now introduce a version of Miller forcing parametrized with a filter F that 
will always diagonalize F . Given p ∈ PT for every s ∈ splitn (p) we define spsucp (s) =
{t \ s | t ∈ splitn+1 (p) ∧ s ⊆ t}.

Definition 16. Let F be a filter. We say p ∈ PT (F) if the following holds:

1. p ∈ PT .
2. If s ∈ split (p) then spsucp (s) ∈ (F<ω)+.

We order PT (F) by inclusion. The following lemma contains some basic results about 
(F<ω)+, which will be used implicitly.

Lemma 17. Let F be a filter on ω and X ∈ (F<ω)+.

1. If F ∈ F , then X ∩ [F ]<ω ∈ (F<ω)+.
2. If X = A ∪B, then either A ∈ (F<ω)+ or B ∈ (F<ω)+.
3. If X = {sn | n ∈ ω} and Y = {yn | n ∈ ω} is such that every yn is a non-empty 

subset of sn, then Y ∈ (F<ω)+.
4. If rgen is an (M (F) , V )-generic real, then rgen contains an element of X.

By point 1 above we get the following:

Lemma 18. PT (F) diagonalizes F .

Given A ⊆ [ω]<ω we define minimal (A) ⊆ A as the set of all minimal elements of A
with respect to the initial segment relation. Note that every element of A contains an 
element of minimal (A). We conclude that if A ∈ (F<ω)+ then minimal (A) ∈ (F<ω)+.

Given p ∈ PT (F), s ∈ split (p) and D ⊆ PT (F) an open dense subset, we de-
fine E (D, p, s) = minimal ({t \ s | ∃q ≤ ps (stem (q) = t ∧ q ∈ D)}). We now have the 
following:

Lemma 19. If p ∈ PT (F), s ∈ split (p) and D ⊆ PT (F) is an open dense subset, then 
E (D, p, s) ∈ (F<ω)+.
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Proof. It would be enough to prove that {t \ s | ∃q ≤ ps (stem (q) = t ∧ q ∈ D)} is in 
(F<ω)+, which is immediate. �

We can then prove the following:

Proposition 20. Let F be a filter.

1. Let M be a countable elementary submodel, p ∈ PT (F), D ⊆ PT (F) an open dense 
subset with p, D ∈ M and s ∈ split (p). There is q ≤ p with stem (q) = s such that 
q � “Ġ ∩D ∩M �= ∅”.

2. PT (F) is proper.

Proof. Let M be a countable elementary submodel, p ∈ PT (F), D ⊆ PT (F) an open 
dense subset with p, D ∈ M and s ∈ split (p). Since p, D, s ∈ M , it follows that 
E (D, p, s) ∈ M . For every t such that t \ s ∈ E (D, p, s), we choose q (t) ∈ M ∩ D

such that q (t) ≤ ps and the stem of q (t) is t. Define q =
⋃

{q (t) | t \ s ∈ E (D, p, s)}. 
We will show that q has the desired properties. Define L = {t | t \ s ∈ E (D, p, s)}, we 
will first prove that q ∈ PT (F). Let z ∈ q be a splitting node. If z extends a t ∈ L, then 
sucq (z) = sucq(t) (z), so sucq (z) ∈ (F<ω)+. Now, assume that z does not extend an el-
ement of L, it is enough to prove that sucq (z) = sucp (z). Let n such that z ∈ splitn (q)
and w ∈ splitn+1 (q) such that z ⊆ w. Since z does not extend an element of L, we know 
that w can be extended to a t ∈ L, so w ∈ q (t). Note that this argument shows that 
stem (q) = s.

We will now prove that q � “Ġ∩D∩M �= ∅”. Let q1 ≤ q. We may assume that q1 ∈ D. 
Let w = stem (q1). By construction, (recall that we took the minimal elements) we know 
there is t ∈ L such that t ⊆ w, in this way q1 ≤ q (t), so q1 � “q (t) ∈ Ġ ∩D ∩M” and 
we are done.

The second part of the lemma follows by the first part and a fusion argument. �

We will need the following lemma:

Lemma 21. Let F be a Canjar filter, {Dn | n ∈ ω} open dense subsets of PT (F) and 
p ∈ PT (F) with stem (p) = s. There are q ∈ PT (F) and 〈Fn〉n∈ω such that the 
following holds:

1. q ≤ p and stem (q) = stem (p).
2. Fn is a finite subset of [ω]<ω \ {∅} for every n ∈ ω.
3. For every n ∈ ω, if t0 ∈ Fn and t1 ∈ Fn+1, then max (t0) < min (t1).
4. spsucq (s) =

⋃
n∈ω

Fn.

5. If t ∈ Fn, then qs�t ∈ Dn.
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Proof. For every n ∈ ω, define Xn = E (Dn, p, s) (recall that E (D, p, s) = minimal

({t \ s | ∃q ≤ ps (stem (q) = t ∧ q ∈ D)})). We know that Xn ∈ (F<ω)+. By the 
previous result, we can find an increasing function f ∈ ωω such that if Yn =
{s ∈ Xn | s ⊆ [f (n− 1) , f (n))} (for every n ∈ ω) then 

⋃
n∈ω

Yn ∈ (F<ω)+.

For every t ∈ Yn, choose q (t) ≤ ps�t such that q (t) ∈ Dn and the stem of q (t) is 
s ∪ t. Define q =

⋃
t∈Y

q (t). �

By taking all the open dense sets to be the same, we obtain the following:

Corollary 22. Let F be a Canjar filter, D an open dense subset of PT (F), p ∈ PT (F)
with stem (p) = s. There is q ∈ PT (F) such that the following holds:

1. q ≤ p and stem (q) = stem (p).
2. If t ∈ spsucq (s) then qs�t ∈ D.

We can now prove the following result:

Proposition 23. Let B be a b-family and F a B–Canjar filter.

1. Let p ∈ PT (F), s ∈ splitm (p) and ġ such that p � “ġ ∈ ωω”. There are q ∈ PT (F), 
f ∈ B and 〈Fn〉n∈ω such that the following holds:
(a) q ≤ p, s ∈ q and if t ∈ p is incomparable with s, then t ∈ q and qt = pt.
(b) For every n ∈ ω, if t0 ∈ Fn and t1 ∈ Fn+1, then max (t0) < min (t1).
(c) spsucq (s) =

⋃
n∈ω

Fn.

(d) If t ∈ Fn then qt � “ġ (n) < f (n)”.
2. PT (F) preserves B.

Proof. We first prove point 1. Let p ∈ PT (F), s ∈ splitm (p) and ġ such that p � “ġ ∈
ωω”. Define Dn ⊆ PT (F) as the set of all q such that q � “ġ (n) < max (stem (q))”. It is 
easy to see that each Dn is an open dense subset of PT (F). We now apply the previous 
lemma.

We will now prove that PT (F) preserves B as an unbounded family. Let p ∈ PT (F)
and ġ such that p � “ġ ∈ ωω”. By the previous point and a fusion argument, we may 
assume that for every s ∈ splitm (p) there are fs ∈ B and 〈F s

n〉n∈ω such that the following 
holds:

1. Each F s
n is a finite subset of p.

2. spsucp (s) =
⋃

n∈ω
F s
n.

3. if t ∈ F s
n then pt � “ġ (n) < fs (n)”.
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Since B is a b-family, we can find f ∈ B such that fs ≤∗ f for every s ∈ split (p). For 
every s ∈ split (p), let ms such that if i > ms then fs (i) ≤ f (i). We can recursively 
build q ≤ p such that split (q) = split (p) ∩ q and sucq (s) =

⋃
n>ms

F s
n. It is easy to see 

that q forces that ġ does not dominate f . �

It is worth mentioning that PT (F) may add dominating reals for certain filters F . 
The simplest example is taking F to be (fin×fin)∗.

The following is a very useful fact about our forcings:

Lemma 24 (Pure decision property). Let F be a Canjar filter, p ∈ PT (F) and A a finite 
set. If ẋ is a PT (F)-name such that p � “ẋ ∈ A” then there are q ≤ p and a ∈ A such 
that stem (q) = stem (p) and q � “ẋ = a”.

Proof. Let D be the set of all q ∈ PT (F) for which there is aq ∈ A such that q � “ẋ =
aq”. Since D is an open dense set, by the previous results, we can find p ≤ p with the 
following properties:

1. stem (p) = stem (p).
2. If t ∈ split1 (p) then pt ∈ D.

Finally, since A is finite, we can find q ≤ p with stem (q) = stem (p) and a ∈ A such 
that qt � “ẋ = a” for every t ∈ split1 (q). It follows that q � “ẋ = a”. �

By Kσ we denote the ideal generated by all σ-compact sets on the Baire space. For 
every function L : ω<ω −→ ω, let K (L) be the set defined as 

{
x ∈ ωω | ∀∞n(x (n) ≤

L (x � n))
}
. It is easy to see that K (L) ∈ Kσ. It is well known that for every K ∈ Kσ

there is f ∈ ωω such that K ⊆ {g ∈ ωω | g ≤∗ f} (see [3] page 6). The following well 
known result follows from this remark:

Lemma 25. Let B ⊆ ωω be an unbounded family. If P is a forcing that preserves B, then 
P � “B /∈ Kσ”.

If T is a finite tree, we will denote the set of its maximal nodes as [T ]. We will need 
the following notion:

Definition 26. Let p ∈ PT (F) and T ⊆ p a finite tree such that [T ] ⊆ split (p). We say 
that q ≤T p if the following conditions hold:

1. q ≤ p.
2. T ⊆ q.
3. T ∩ split (q) = T ∩ split (p).



14 O. Guzmán, D. Kalajdzievski / Advances in Mathematics 386 (2021) 107805
We fix a canonical bijection d : ω −→ ω<ω such that if d (m) ⊆ d (n) then m ≤ n. 
Given p ∈ PT (F) and n ∈ ω, we define the set T̃ (p, n) =

{
s ∈ split (p) | d−1 (s) ≤ n

}
. 

Let T (p, n) ⊆ ω<ω be the smallest tree such that T̃ (p, n) ⊆ T (p, n). It is clear that 
T (p, n) is a finite subtree of p such that [T (p, n)] ⊆ split (p). It is easy to see that if 
q ≤T (p,n) p and n ≤ m, then T (p, n) ⊆ T (q,m).

Let p ∈ PT (F) and B a b-family. We define the game G (F , p,B) as follows:

I p0 p1 p2 ...

II n0 n1 n2

1. pi ∈ PT (F) and ni ∈ ω for every i ∈ ω.
2. p0 = p.
3. 〈ni〉i∈ω is increasing.
4. pm+1 ≤Tm

pm where Tm = T (pm, nm).

The player II will win the game G (F , p,B) if 
⋃
Tm ∈ PT (F) and f ∈ B where f is 

the function given by f (i) = ni.

Proposition 27. Let F be a filter, p ∈ PT (F) and B a b-family. If F is B-Canjar, then 
I does not have a winning strategy in G (F , p,B).

Proof. Let σ be a strategy for player I, we must prove that player II can defeat σ. Define 
{p (s) | s ∈ ω<ω} ⊆ PT (F) as follows:

1. p (∅) = p.
2. If s = 〈n0, ..., nm〉 then p (s) is the tree played by player I at the m-step if he is 

playing according to σ and II plays ni at the step i for i ≤ m.

Let rgen be an (M (F) , V )-generic real (note that rgen is generic for M (F), not for 
PT (F)). In V [rgen] we define a function L : ω<ω −→ ω as follows: Let s = 〈ni〉i<m ∈
ω<ω, we look at p (s), assume that player II plays ni at the step i for i < m and player I
is following σ. Let Tm be the tree defined so far (as in the definition in the game). Let 
t ∈ Tm∩ split (p (s)) and since spsucp(s) (t) ∈ (F<ω)+, it follows by genericity that there 
is ms (t) ∈ ω such that there is us (t) ∈ spsucp(s) (t) for which us (t) ⊆ (rgen \m)∩ms (t). 
Let L (s) such that d−1 (t ∪ us (t)) < L (s) for all t ∈ Tm ∩ split (p (s)).

Since F is B-Canjar, we can find f ∈ B and (z, F ) ∈ M (F) such that (z, F ) � “f /∈
K(L̇)”. We claim that if II plays f (n) at the n-step of the game, then she will win the 
match. Let q =

⋃
Tm, we must show that q ∈ PT (F).

Let t ∈ q be a splitting node, find n ∈ ω such that t ∈ Tn (where Tn is defined 
as in the game). We must prove that spsucq (t) ∈ (F<ω)+. Let H ∈ F and note that 
(z, F ∩H) � “f /∈ K(L̇)”. We know we can find (z ∪ z0, G) ∈ M (F) and m ∈ ω such 
that the following conditions hold:
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1. m > n, max (z).
2. max (z) < min (z0).
3. (z ∪ z0, G) ≤ (z, F ∩H) (in particular, z0 ⊆ H).
4. (z ∪ z0, G) � “L̇ (f � m) < f (m)”.

It follows by all the definitions that Tm+1 will contain an element of the set 
spsucp(f�m) (t). Note that such element must be a subset of z0, so in particular is a 
subset of H. This finishes the proof. �

The previous argument was motivated by the fact that Canjar is equivalent to its 
“game version”. This interesting result is a corollary of the theorems proved by Chodoun-
ský, Repovš and Zdomskyy in [19], we will comment more about this in the next section.

Definition 28. We say that D ⊆ PT (F) is purely dense if the following conditions hold:

1. If p ∈ D and q ≤ p then q ∈ D (D is open).
2. For every p ∈ PT (F) and for every finite tree T ⊆ p such that [T ] ⊆ split (p), there 

is q ≤T p such that q ∈ D.

Intuitively, the purely dense sets are the open sets we can get in by only using the 
pure decision property.

We will now prove that if F is a Canjar filter, then PT (F) does not add Cohen or 
random reals. Recall the following notion:

Definition 29. We say that c ∈ ωω is a half-Cohen real over V if for every f ∈ ωω ∩ V

the set {n | c (n) = f (n)} is infinite.

Obviously every Cohen real over V is half-Cohen over V . It can be proved that if one 
adds an unbounded real and then a half-Cohen, a Cohen real is added (see [5]). It was 
a long standing question of Fremlin if it was possible to add a half-Cohen real without 
adding a Cohen real. This problem was finally solved positively by Zapletal in [63]. We 
will prove that if F is Canjar, then PT (F) does not add a half-Cohen real. We start 
with the following lemma:

Lemma 30. Let F be a Canjar filter and ȧ a PT (F)-name for a natural number. The 
set D = {p ∈ PT (F) | ∃k ∈ ω (p � “ȧ �= k”)} is purely dense.

Proof. Let p ∈ PT (F) and T ⊆ p a finite tree such that every maximal node of T is 
an element of split (p). We need to find q ≤T p such that q ∈ D. Let n = |T ∩ split (p)|
and for every s ∈ T ∩ split (p) let p (s) ≤ ps be the biggest subtree of ps such that 
every t ∈ T ∩ p (s) is a restriction of s. Using the pure decision property, for every 
s ∈ T ∩ split (p) we can find q (s) ∈ PT (F) and ks ∈ ω with the following properties:
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1. q (s) ≤ p (s) and the stem of q (s) is s.
2. q (s) � “ȧ ≤ n + 1” or q (s) � “ȧ > n + 1”.
3. If q (s) � “ȧ ≤ n + 1” then q (s) � “ȧ = ks”.

Since n = |T ∩ split (p)|, we can find k ≤ n + 1 such that k �= ks for every s ∈
T ∩ split (p). Let q =

⋃
{q (s) | s ∈ T ∩ split (p)}. Note that q ≤T p and q � “ȧ �= k”, 

this finishes the proof. �

We can now prove the following:

Proposition 31. If F is a Canjar filter, then PT (F) does not add half-Cohen reals.

Proof. Let p ∈ PT (F) and ḟ a PT (F)-name for an element of ωω. We must prove 
that there is q ≤ p and g ∈ ωω such that q � “ḟ ∩ g = ∅”. For every n ∈ ω, define 
Dn = {q ∈ PT (F) | ∃k ∈ ω(q � “ḟ (n) �= k”)}, note that each Dn is purely dense by 
the previous lemma.

Let � be any well order of PT (F). We will recursively define a strategy σ for player 
I on the game G (F , p, ωω) as follows:

1. I starts by playing p.
2. Assume we are at round m + 1 and I has played p0, ..., pm while player II has played 

n0, ..., nm−1. If player II plays nm, then player I plays pm+1 where pm+1 is the �-
least element of PT (F) such that pm+1 ∈ Dm and pm+1 ≤Tm

pm (where Tm =
T (pm, nm)).

Since F is Canjar, we know that σ is not a winning strategy for player I, which means 
that there is a function d ∈ ωω such that if player II plays d (n) at the n-step then she 
will win. Let q be the condition constructed at the end of the game. Note that q ∈

⋂
∈ω

Dn

in this way, we can define a function g : ω −→ ω such that q � “ḟ (n) �= g (n)” for every 
n ∈ ω. This finishes the proof. �

We will now prove that if F is Canjar, then PT (F) does not add bounded eventually 
different reals. By Fn (ω) we will denote the set of all functions z : a −→ ω such that 
a ∈ [ω]<ω. We will need the following lemma:

Lemma 32. Let m ∈ ω, g ∈ ωω and ḟ be a PT (F)-name for a function bounded by g. 
The set D = {p ∈ PT (F) | ∃z ∈ Fn (ω) (m ∩ dom (z) = ∅ ∧ p � “ḟ ∩ z �= ∅”)} is purely 
dense.

Proof. Let p ∈ PT (F) and T ⊆ p a finite tree such that every maximal node of T is 
an element of split (p). We need to find q ≤T p such that q ∈ D. Let n = |T ∩ split (p)|
and for every s ∈ T ∩ split (p) let p (s) ≤ ps be the biggest subtree of ps such that every 
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t ∈ T ∩ p (s) is a restriction of s. Let T ∩ split (p) = {si | i < n}. Using the pure decision 
property, for every si ∈ T ∩ split (p) we can find q (si) ∈ PT (F) and ki ∈ ω with the 
following properties:

1. q (si) ≤ p (si) and the stem of q (si) is si.
2. q (si) � “ḟ (m + i) = ki”.

Note that q (si) can be found (with the pure decision property) since there are only 
finitely many possibilities for ḟ (m + i). We now define a function z : [m, m + n) −→ ω

given by z (m + i) = ki. Let q =
⋃

{q (s) | s ∈ T ∩ split (p)}. Note that q ≤T p and 
q � “ḟ ∩ z �= ∅”, this finishes the proof. �

We now can prove the following:

Proposition 33. If F is a Canjar filter, then PT (F) does not add bounded eventually 
different reals.

Proof. Let p ∈ PT (F), g ∈ ωω and ḟ an PT (F)-name for an element of ωω bounded by 
g. We must prove that there is q ≤ p and h ∈ ωω such that q � “

∣∣ḟ ∩ h
∣∣ = ω”. For every 

m ∈ ω, define Dm = {p ∈ PT (F) | ∃z ∈ Fn (ω) (m ∩ dom (z) = ∅ ∧ p � “ḟ ∩ z �= ∅”)}, 
which we already know is a purely dense set.

Let � be any well order of PT (F). We will recursively define a strategy σ for player 
I on the game G (F , p, ωω) as follows:

1. I starts by playing p.
2. Assume we are at round m + 1 and I has played p0, ..., pm while player II has played 

n0, ..., nm−1. If player II plays nm, then player I plays pm+1 where pm+1 is the �-
least element of PT (F) such that pm+1 ∈ Dm and pm+1 ≤Tm

pm (where Tm =
T (pm, nm)).

Since F is Canjar, we know that σ is not a winning strategy for player I, hence there is 
a function d ∈ ωω such that if player II plays d (n) at the n-step then, she will win. Let q
be the condition constructed at the end of the game. Note that q ∈

⋂
∈ω

Dn, this means that 

for every n ∈ ω, we can find a finite function z such that dom (z) = ∅ and q � “z∩ ḟ �= ∅”. 
We can now easily find a function h : ω −→ ω such that q � “

∣∣ḟ ∩ h
∣∣ = ω”. �

It is well known that adding a random real adds a bounded eventually different real. 
In this way we conclude the following:

Corollary 34. If F is a Canjar filter, then PT (F) does not add random reals.

We also have the following lemma:
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Lemma 35. Let T ⊆ ω<ω be a finite tree, p ∈ PT (F) such that [T ] ⊆ split (p), let 
n = |split (p) ∩ T | and let A be a finite set. If ẋ is a PT (F)-name such that p � “ẋ ∈ A”, 
there is q ≤T p and B ∈ [A]n such that q � “ẋ ∈ B”.

Proof. The lemma easily follows by applying the pure decision property n-many 
times. �

4. Preservation of P -points

Let U be an ultrafilter and P a partial order. We say that P preserves U if U is the 
base of an ultrafilter after forcing with P . It is well known that no ultrafilter is preserved 
by Cohen, random, Silver or forcings adding a dominating real. Also there is an ultrafilter 
that is destroyed by any forcing that adds a new real (see [3]). On the other hand, certain 
forcings may preserve some ultrafilters, this is the case for Sacks and Miller forcings. The 
preservation of P -points is particularly interesting in light of the following theorem of 
Shelah (see [58] or [3]):

Proposition 36 (Shelah). Let δ be a limit ordinal, 〈Pα, Q̇α | α < δ〉 a countable support 
iteration of proper forcings and let U be a P -point. If Pα � “Q̇α preserves U” for every 
α < δ, then Pδ preserves U .

In particular, forcings that preserve P -points do not add Cohen or random reals, 
even in the iteration. It is well known that Sacks forcing preserves P -points and Miller 
forcing preserves an ultrafilter U if and only if U is a P -point (see [50]). Note that if P
diagonalizes U , then P does not preserve U , however, it is possible to not preserve an 
ultrafilter without diagonalizing it. For more on preservation of ultrafilters, the reader 
may consult [43], [50], [3], [48], [62] and [64].

In light of the results of the previous section, it might be tempting to conjecture that 
if F is a Canjar filter, then PT (F) preserves P -points. However, this is not the case: the 
simplest example is to take U a Canjar P -point, since PT (U) diagonalizes U , it follows 
that PT (U) does not preserve U . In this section, we will find a condition on a filter F
that guarantees preserving a certain P -point.

We will need the following result, which is a particular case of Lemma 11:

Lemma 37. Let F be a Canjar filter and X ∈ (F<ω)+. There is Y ⊆ X such that 
Y ∈ (F<ω)+ and for every n ∈ ω, the set {s ∈ Y | s ∩ n �= ∅} is finite.

We can now prove the following:

Lemma 38. Let F be a Canjar filter, p ∈ PT (F) and c : split (p) −→ 2. There is q ≤ p

such that split (q) is c-monochromatic.



O. Guzmán, D. Kalajdzievski / Advances in Mathematics 386 (2021) 107805 19
Proof. Assume there is no q ≤ p such that split (q) is 0-monochromatic. We will prove 
that there is q ≤ p such that split (q) is 1-monochromatic. Given s ∈ split (p), we define 
X (s) as the set of all t \ s for which t ∈ split (p), s ⊆ t and c (t) = 1. We claim that 
X (s) ∈ (F<ω)+. Assume this is not the case, so there is A ∈ F such that A does not 
contain any element of X (s). Let q ≤ ps such that if t ∈ split (q), then t \ s ⊆ A. It 
follows that if t ∈ split (q), then c (t) = 0, so split (q) is 0-monochromatic, which is a 
contradiction. We conclude that X (s) ∈ (F<ω)+ for every s ∈ split (p). By the previous 
result, we can find Y (s) ⊆ X (s) such that Y (s) ∈ (F<ω)+ and for every n ∈ ω, the set 
{z ∈ Y | z ∩ n �= ∅} is finite. The proof follows by a simple fusion argument. �

Let F be a filter. The Canjar game GCanjar (F) is defined as follows:

I X0 X1 X2 ...

II Y0 Y1 Y2

Where Xi ∈ (F<ω)+ and Yi ∈ [Xi]<ω for every i ∈ ω. The player II wins the game
GCanjar (F) if 

⋃
n∈ω

Yn ∈ (F<ω)+. In [19], Chodounský, Repovš and Zdomskyy showed 

that sets in (F<ω)+ naturally correspond to open covers of F (viewed as a subspace of 
℘ (ω)). Moreover, they proved that a filter F is Canjar if and only if F has the Menger 
property (see [56] for the definition of Menger property). In this way, the Canjar game is 
just a particular case of the Menger game that has been extensively studied in topology.

Proposition 39 ([19]). Let F be a filter. The following are equivalent:

1. F is Canjar.
2. F is Menger.
3. Player I does not have a winning strategy in GCanjar (F).

We will now prove the following lemma:

Lemma 40. Let F be a Canjar filter, p ∈ PT (F), Ḃ a PT (F)-name such that p �
“Ḃ ∈ [ω]ω” and s ∈ split (p). There are q ∈ PT (F), Bs ⊆ ω and 〈Fn〉n∈ω such that the 
following holds:

1. q ≤ p and stem (q) = s.
2. Fn is a finite subset of [ω]<ω \ {∅} for every n ∈ ω.
3. For every n ∈ ω, if t0 ∈ Fn and t1 ∈ Fn+1, then max (t0) < min (t1).
4. spsucq (s) =

⋃
n∈ω

Fn.

5. If t ∈ Fn, then qs�t � “Ḃ ∩ (n + 1) = Bs ∩ (n + 1)”.

Proof. We define σ a strategy for player I in GCanjar (F) as follows:



20 O. Guzmán, D. Kalajdzievski / Advances in Mathematics 386 (2021) 107805
1. Using the pure decision property, player I finds q0 ≤ p with stem (q) = s and w0
such that q0 � “Ḃ ∩ 1 = w0” and plays X0 = spsucq0 (s).

2. Assume that player II plays Y0 ∈ [X0]<ω. Let l0 ∈ ω be the least such that 
⋃
Y0 ⊆ l0

and Z0 = {t ∈ X0 | t ∩ l0 = ∅} ∈ (F<ω)+. Let q1 ≤ q0 be the condition defined as 
q1 =

⋃
t∈Z0

(
q0)

s�t
. Using the pure decision property, player I finds q1 ≤ q1 with 

stem (q) = s and w1 such that q1 � “Ḃ ∩ 2 = w1” and plays X1 = spsucq1 (s).
3. In general, at step n, the player I has constructed a decreasing sequence 

〈
qi
〉
i≤n

where 

stem (qn) = s, an increasing sequence 〈wi〉i≤n such that qn � “Ḃ ∩ (n + 1) = wn” 
has played the sequence 〈Xi〉i≤n where Xi = spsucqi (s), he has also constructed 
an increasing sequence 〈li〉i≤n such that Yi ⊆ [li−1, li) (where l−1 = 0 and Yi is 
the response of player II at round i). Assume that player II plays Yn ∈ [Xn]<ω. Let 
ln ∈ ω be the least such that 

⋃
Yn ⊆ ln and Zn = {t ∈ Xn | t ∩ ln = ∅} ∈ (F<ω)+. 

Let qn+1 ≤ qn be the condition defined as qn+1 =
⋃

t∈Zn

(qn)s�t. Using the pure 

decision property, player I finds qn+1 ≤ qn with stem (q) = s and wn+1 such that 
qn+1 � “Ḃ ∩ (n + 2) = wn+1” and plays Xn+1 = spsucqn+1 (s).

Since F is Canjar, we know that σ is not a winning strategy for the Canjar game. 
Consider a run in which player II defeated the strategy. Let q =

⋃
t\s∈Yi

(
qi
)
s�t

and note 

that q ∈ PT (F) since player II won the game. Define Fi = Yi and Bs =
⋃
i∈ω

wi, it is clear 

that these are the items we were looking for. �

Let U be an ultrafilter. Recall that the P -point game GP -point (U) is defined as follows:

I W0 W1 ...

II z0 z1

Where Wi ∈ U and zi ∈ [Wi]<ω. The player II will win the game GP -point (U) if ⋃
m∈ω

zm ∈ U . It is well known that player II can not have a winning strategy for this 

game. The following is a well known result of Galvin and Shelah (see [3] for a proof):

Proposition 41 (Galvin, Shelah). Let U be an ultrafilter. The following are equivalent:

1. U is a P -point.
2. Player I does not have a winning strategy in GP -point (U).

Let U be an ultrafilter and F a filter. We will now define the game H (U ,F), which 
is a fusion between the P -point game and the game for PT (F). The game is defined as 
follows:

I W0 p0 W1 p1 ...

II z n z n
0 0 1 1
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Where the following conditions hold for every i ∈ ω:

1. Wi ∈ U .
2. zi ∈ [Wi]<ω.
3. pi ∈ PT (F).
4. 〈ni〉i∈ω is an increasing sequence of natural numbers.
5. pm+1 ≤Tm

pm where Tm = T (pm, nm).

The player II will win the game H (U ,F) if 
⋃

m∈ω
Tm ∈ PT (F) and 

⋃
m∈ω

zm ∈ U .

Definition 42. Let F be a filter and U an ultrafilter. We will say that F is an U-Canjar 
filter if player I has no winning strategy in H (U ,F).

Note that the previous notion is only of interest when F is Canjar and U is a P -point. 
It is easy to see that if U is an ultrafilter, then U is not U-Canjar (and will also follow 
by the next result). Our interest in U-Canjar filters is that (as we are about to prove), 
its Miller forcing preserves U . Our proof is based on the argument of Miller that the 
superperfect forcing preserves P -points (see [50]).

Proposition 43. If U is a P -point and F is an U-Canjar filter, then PT (F) preserves U .

Proof. Let p ∈ PT (F) and Ḃ a PT (F)-name such that p � “Ḃ ∈ [ω]ω”. By Lemma 40, 
we may assume that for every s ∈ split (p), there is Bs ⊆ ω and 〈F s

n〉n∈ω with the 
following properties:

1. F s
n is a finite subset of [ω]<ω \ {∅} for every n ∈ ω.

2. For every n ∈ ω, if t0 ∈ F s
n and t1 ∈ F s

n+1, then max (t0) < min (t1).
3. spsucp (s) =

⋃
n∈ω

F s
n.

4. If t ∈ F s
n, then ps�t � “Ḃ ∩ (n + 1) = Bs ∩ (n + 1)”.

Furthermore, by the Lemma 38 we may assume that either Bs ∈ U for all s ∈ split (p)
or Bs ∈ U∗ for all s ∈ split (p). We will assume that Bs ∈ U for all s ∈ split (p) (in the 
other case we work with ω \ Ḃ)). Let s0 be the stem of p. We will define a strategy σ for 
player I in H (U ,F) as follows:

1. I starts by playing W0 = Bs0 .
2. Assume that player II plays z0 ∈ [W0]<ω. Let l0 = max (z0), player I will play 

p0 =
⋃{

ps�0 t | t ∈ F s0
i ∧ i > l0

}
. Note that p0 � “z0 ⊆ Ḃ”.

3. Assume that player II plays n0 ∈ ω. Now, the player I will play the set W1 =⋂
{Bs \ l0 | s ∈ split (p0) ∩ T0} (where T0 = T (p0, n0)).
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4. In general, let’s assume in the game it has already been played the sequence 
〈W0, z0, p0, n0,W1...Wm, zm, pm〉. At the same time, player I has been making sure 
that the sequence 〈pi〉i≤m has the following properties:
(a) pi+1 ≤Ti

pi (where Ti = T (pi, ni)) for all i < m.
(b) pi � “zi ⊆ Ḃ” for all i ≤ m.

Now, assume that player II plays nm ∈ ω. Player I proceeds to play Wm+1 =⋂
{Bs \ lm | s ∈ split (pm) ∩ Tm} where lm = max (zm). Assume player II responds 

with zm+1 ∈ [Wm+1]<ω. For every t ∈ Tm ∩ split (pm), let ptm ≤ pm be the biggest 
subtree such that stem (ptm) = t and every node in ptm ∩ Tm is contained in t. Let 
qt =

⋃
{(ptm)x | x ∈ F t

i ∧ i > lm+1} (where lm+1 = max (zm+1)) and now player I coun-
terattacks with pm+1 =

⋃
{qt | t ∈ Tm ∩ split (pm)}. It is easy to see that pm+1 ≤Tm

pm
and pm+1 � “zm+1 ⊆ Ḃ”.

Since F is U-Canjar, we know that σ is not a winning strategy. Consider a run of the 
game where player I followed the strategy σ, but player II was the winner. In this way, 
we know that U =

⋃
i∈ω

zi ∈ U and q =
⋃
i∈ω

Ti is a condition of PT (F). By construction, 

it follows that q � “U ⊆ Ḃ” and we are done. �

5. A model of ω1 = u < s

In order to increase the splitting number, it is enough to diagonalize an ultrafilter, 
and to preserve the ultrafilter number, it is enough preserve a P -point. In this way, in 
order to construct a model of u < s it is enough to find a P -point W and an ultrafilter 
U that is W-Canjar. In this situation, we will have that PT (W) adds an unsplit real 
while preserving W. In this section, we will use our results to build a model of u < s. 
This result is not new, as it already holds in the Blass-Shelah model (see [7] or [3]). At 
least in the opinion of the authors, the combinatorics involved in our forcing are simpler 
than the ones from the Blass-Shelah forcing.

We will first focus on constructing a B-Canjar ultrafilter for some b-family B. Such 
ultrafilters can either be constructed under the Continuum Hypothesis or forced with 
a σ-closed forcing (see [8], [15], [17] or [28]). This follows by the result of Shelah and 
the decomposition representation of Brendle and Raghavan. In [28] the first author, 
Michael Hrušák and Arturo Antonio Martinez Celis-Rodriguez published a proof of the 
consistency of b < s and b < a using directly the representation of Brendle and Raghavan. 
This section and the following borrows some of the arguments from [28].

Given X a collection of finite non-empty subsets of ω, we define C (X) =
{A ⊆ ω | ∀s ∈ X (s ∩A �= ∅)}. The following lemma contains some of the combinato-
rial properties of compact sets that we will need:

Lemma 44. Let F be a filter, D ⊆ F be a compact set and X ∈ (F<ω)+.

1. C (X) is a compact set.
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2. There is Y ∈ [X]<ω such that for every A ∈ D there is s ∈ Y such that s ⊆ A.
3. If C (X) ⊆ F then for every n ∈ ω there is S ∈ [X]<ω such that if A0, ..., An ∈ C (S)

and F ∈ D then A0 ∩ ... ∩An ∩ F �= ∅.
4. If U is an ultrafilter and Y ⊆ [ω]<ω then Y ∈ (U<ω)+ if and only if C (Y ) ⊆ U .

Proof. For item 1, it is easy to see that C (X) is a closed subset of ℘ (ω). We now 
prove item 2, let X ∈ (F<ω)+ and D ⊆ F a compact set. For every s ∈ X, we define 
U (s) = {A | s ⊆ A}. It is easy to see that U (s) is an open set and {U (s) | s ∈ X} is an 
open cover for D (because X ∈ (F<ω)+). Since D is compact, there is Y ∈ [X]<ω such 
that {U (s) | s ∈ Y } is an open cover for D. Clearly Y is the set we were looking for.

We now prove 3, let C (X) ⊆ F and n ∈ ω. Given s ∈ X define K (s) as the set 
of all (A0, . . . , An) ∈ C (s)n+1 with the property that there is F ∈ D such that A0 ∩
. . . ∩ An ∩ F = ∅. It is easy to see that K (s) is a compact. Note that if (A0, . . . , An) ∈⋂
s∈X

K (s) then A0, . . . , An ∈ C (X) ⊆ F and there would be F ∈ D ⊆ F such that 

A0 ∩ . . .∩An ∩F = ∅ which is clearly a contradiction. Since the K (s) are compact, then 
there must be S ∈ [F ]<ω such that 

⋂
s∈S

K (s) = ∅. It is easy to see that this is the S we 

are looking for.
We now prove 4. Let U be an ultrafilter and Y ⊆ [ω]<ω. We will prove that Y /∈ (U<ω)+

if and only if C (Y ) � U . First assume that Y /∈ (U<ω)+, this means that there is A ∈ U
that does not contain any element of Y , so B = ω \ A intersects every element of Y , 
hence B ∈ C (Y ) which implies that C (Y ) � U . Now assume that C (Y ) � U , so there is 
B ∈ C (Y ) such that B /∈ U , hence A = ω \B ∈ U . Since B ∈ C (Y ), this implies that A
does not contain any element of Y , so Y /∈ (U<ω)+. �

We will need the following notion:

Definition 45. Let I be an ideal on ω. We define Fσ (I) as the collection of all Fσ-filters 
F such that F ∩ I = ∅. We order Fσ (I) by inclusion.

Note that an Fσ-filter F is in Fσ (I) if and only if F ∪ I∗ generates a filter. The 
following are some properties of these types of forcings:

Lemma 46. Let I be an ideal on ω.

1. Fσ (I) is a σ-closed forcing.
2. Fσ (I) adds an ultrafilter (which we will denote by Ugen (I)) disjoint from I.
3. Fσ (I) ∗ PT (U̇gen(I)) and Fσ (I) ∗M(U̇gen(I)) are proper forcings that destroy I.

If A is a MAD family, we will denote Fσ (A) instead of Fσ (I (A)) and Ugen (A) instead 
of Ugen (I (A)). Note that Fσ

(
[ω]<ω) is the collection of all Fσ-filters. In this case, we 

will only denote it by Fσ and by Ugen we will denote the generic ultrafilter added by Fσ. 
The following lemma is easy and left to the reader:
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Lemma 47. If I is an ideal, X ⊆ [ω]<ω and F ∈ Fσ (I), then F � “X ∈ (U̇gen (I)<ω )+” 
if and only if C (X) ⊆ 〈F ∪ I∗〉 (where 〈F ∪ I∗〉 is the filter generated by F ∪ I∗).

In particular, if F ∈ Fσ and X ⊆ [ω]<ω, then F � “X ∈ (U̇gen
<ω)+” if and only if 

C (X) ⊆ F . We will now prove the following:

Proposition 48. If B ∈ V is a b-family, then Fσ forces that U̇gen is B-Canjar.

Proof. By the previous observation and since Fσ is σ-closed, it is enough to show that if 
F � “X = 〈Xn〉n∈ω ⊆ (U̇<ω

gen)+” then there is G ≤ F and f ∈ B such that C
(
Xf

)
⊆ G.

Let F =
⋃

Cn where each Cn is compact and they form an increasing chain. By a 
previous lemma, there is g : ω −→ ω such that if n ∈ ω, F ∈ Cn and A0, . . . , An ∈
C (Xn ∩ ℘ (g (n))) then A0 ∩ . . . . ∩ An ∩ F �= ∅. Since B is unbounded, then there is 
f ∈ B such that f �∗ g. We claim that F ∪ C

(
Xf

)
generates a filter. Let F ∈ Cn

and A0, . . . , Am ∈ C
(
Xf

)
. We must show that A0 ∩ . . . . ∩ Am ∩ F �= ∅. Since f is not 

bounded by g, we may find r > n, m such that f (r) > g (r). In this way, A0, . . . , An ∈
C (Xn ∩ ℘ (g (n))) and then A0 ∩ . . . . ∩Am ∩F �= ∅. Finally, we can define G as the filter 
generated by F ∪ C

(
Xf

)
. �

In this way, we conclude the following:

Corollary 49. The forcing Fσ ∗ PT (U̇gen) is proper, adds an unsplit real, preserves all 
b-scales from the ground model and does not add Cohen reals.

A forcing notion is called weakly ωω-bounding if it does not add dominating reals. 
Unlike the ωω-bounding property, the weakly ωω-bounding property is not preserved 
under two step iteration (see [1]). However, Shelah proved the following preservation 
result:

Proposition 50 (Shelah, see [1]). If γ ≤ ω2 is limit and 〈Pα, Q̇α | α ≤ γ〉 is a countable 
support iteration of proper forcings and each Pα is weakly ωω-bounding (over V ) then 
Pγ is weakly ωω-bounding.

Note that P is weakly ωω-bounding if and only if it preserves the unboundedness of 
all (one) dominating families. By applying the result of Shelah we can easily conclude 
the following result.

Corollary 51. If V satisfies CH and 〈Pα, Q̇α | α ≤ ω2〉 is a countable support iteration 
of proper forcings such that Pα forces that Q̇α preserves the unboundedness of all well-
ordered unbounded families, then Pω2 is weakly ωω-bounding.

With these results we can conclude the following result of Shelah:
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Proposition 52 (Shelah). There is a model of ω1 = b < s = cov(M) = c = ω2.

Proof. We perform a countable support iteration 〈Pα, Q̇α | α ≤ ω2〉 where Pα � “Q̇α =
Fσ ∗M(U̇gen)”. The result follows by the previous results. �

Recall that a forcing P is almost ωω-bounding if for every P -name ḟ for an element 
of ωω and q ∈ P , there is g ∈ ωω such that for every A ∈ [ω]ω, there is qA ≤ q such that 
qA �“g � A �∗ ḟ � A” (the reader may consult [2] to learn more about this property). 
It follows by the results of Shelah and Brendle and Raghavan that the iterands in the 
previous model are almost ωω-bounding, but it is not clear that this follows from our 
approach. In [19] it was proved that a forcing P is almost ωω-bounding if and only if it 
preserves every unbounded family of the ground model. The referee asked us if preserving 
the unboundedness of all well-ordered unbounded families imply the almost ωω-bounding 
property, we do not know the answer to this question.

As was mentioned before, by the result of Brendle and Raghavan, Fσ ∗ M(U̇gen) is 
forcing equivalent to the original creature forcing of Shelah for b < s. We will now prove 
that if we iterate Fσ ∗PT (U̇gen), we will get a model of u < s. Although we will not need 
the following result, it is illustrative to prove first the following:

Proposition 53. If U is a P -point and F is an Fσ-filter, then F is U-Canjar.

Proof. Let U be a P -point and F =
⋃

n∈ω
Cn be an Fσ-filter, where 〈Cn〉n∈ω is an increasing 

sequence of compact sets. We will argue by contradiction, so assume that F is not U -
Canjar, i.e. player I has a winning strategy for the game H (U ,F), call σ such strategy. 
We will use σ to construct a winning strategy for I in the P -point game, which will 
obviously entail a contradiction.

Given X ∈ (F<ω)+ and n ∈ ω, choose Y (X,n) ∈ [X]<ω such that every element of 
Cn contains an element of Y (X,n) (which is possible by Lemma 44). We now define π a 
strategy for player I in GP -point (U) as follows:

1. Player I starts by playing W0 = σ (∅) (i.e. W0 is the first play in the game H (U ,F)).
2. Assume player II plays z0 ∈ [W0]<ω as her response in H (U ,F). Let p0 = σ (W0, z0)

and s0 be the stem of p0. Define n0 > d−1 (s0) to be the least integer such that 
d−1(s0

�t) < n0 for all t ∈ Y (spsucp0 (s0) , 0). Player I will play (in GP -point (U)) 
W1 = σ (W0, z0, p0, n0) (i.e. his response in H (U ,F) if player II had played n0).

3. In general assume that it has been played the sequence 〈W0, z0, ...,Wm〉. At the same 
time, in secret the player I has been constructed a partial play 〈W0, z0, p0, n0, W1, z1,

p1, n1..., Wm〉 in the game H (U ,F) following σ such that for every i < m, the inte-
ger ni has the following property: for every u ∈ T (pi, ni−1) (where n−1 = d−1 (s0)) 
and for every t ∈ Y (spsucpi

(u) , i), we have that d−1(u�t) < ni. Assume that 
player II plays zm as her next response in GP -point (U). Let pm be the tree defined 
as σ (W0, z0, n0,W1, ...,Wm, zm) and let nm > nm−1 the least integer with the fol-
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lowing property: for every u ∈ T (pm, nm−1) and for every t ∈ Y (spsucpm
(u) ,m), 

we have that d−1(u�t) < nm. Player I will play the set Wm+1 that is defined as 
σ (W0, z0, n0,W1, ...,Wm, zm, pm, nm).

The game GP -point (U):

I W0 W1 ...

II z0 z1

The game H (U ,F):

I W0 p0 W1 p1 ...

II z0 n0 z1 n1

We claim that π is a winning strategy for player I in GP -point (U). Consider a run of 
the game in which player I played according to π. Let Z =

⋃
n∈ω

zn, we will prove that 

Z /∈ U . Let q =
⋃
i∈ω

T (pi, ni) be the tree that was constructed during the play. It is easy 

to see that q ∈ PT (F), but since player I was following his winning strategy σ in the 
side game, we know that he won, so it must be the case that Z /∈ U . This shows that π
is a winning strategy for player I in GP -point (U). Since player I can not have a winning 
strategy in the P -point game, we get a contradiction. �

We will now prove that the forcing Fσ ∗ PT (U̇gen) preserves all ground model P -
points. First we will need the following lemma, which is a slight generalization of part 
of Lemma 44:

Lemma 54. Let F be a filter, D ⊆ F a compact set and X1, ..., Xn ⊆ [ω]<ω such that 
C (X1) , ..., C (Xn) ⊆ F . There are Y1 ∈ [X1]<ω

, ..., Yn ∈ [Xn]<ω such that for every 
F ∈ D and for every A1

i , ..., A
n
i ∈ C (Yi) (with i ≤ n), we have that F ∩

⋂
i,j≤n

Aj
i �= ∅.

Proof. Consider the space Z = (
n∏

i=1
℘ (ω)n) × D, which we know is compact. Given 

l ∈ ω, let K (l) be the set of all (
〈
A1

i , ..., A
n
i

〉
i≤n

, F ) ∈ Z such that A1
i , ..., A

n
i ∈ C(Xi ∩

℘ (l)) (for every i ≤ n) and F ∩
⋂

i,j≤n

Aj
i = ∅. Clearly K (l) is a closed subspace. Since 

C (X1) , ..., C (Xn) , D ⊆ F , we conclude that 
⋂
l∈ω

K (l) = ∅, hence by the compactness of 

Z, we conclude that there is l ∈ ω such that K (l) = ∅. Let Yi = Xi ∩ ℘ (l). It is clear 
that these are the sets we were looking for. �

We can now prove the following result, which is a fusion of the proofs of Proposition 53
and Proposition 48:

Proposition 55. If W is a P -point, then Fσ forces that U̇gen is W-Canjar.
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Proof. We will prove the proposition by contradiction. Assume there is F an Fσ-filter and 

σ such that F forces that σ is a winning strategy for player I in H(W, U̇gen). Note that 
strategies for I are countable objects and since Fσ is σ-closed, it is enough to consider 
ground model strategies. Let F =

⋃
n∈ω

Cn where 〈Cn〉n∈ω is an increasing sequence of 

compact sets. We will use σ to construct a winning strategy for I in the game GP -point (W), 
which will be a contradiction.

Note that if p is a Miller tree such that p is a possible response of player I according 

to σ and s ∈ split (p), then F � “spsucp (s) ∈ (U̇<ω
gen)+” (this is because F is forcing that 

σ is a strategy for player I, which implies that p must be a legal move), in particular 
C (spsucp (s)) ⊆ F .

For every X = {X1, ..., Xn} such that Xi ⊆ [ω]<ω \ {∅} and C (Xi) ⊆ F for every 

i ≤ n and for every k ∈ ω, fix a function F(X ,k) : X −→ [[ω<ω]]<ω with the following 

properties:

1. Yi = F(X ,k) (Xi) ∈ [Xi]<ω for every i ≤ n.
2. For every B ∈ Ck and for every A1

i , ..., A
n
i ∈ C (Yi) (with i ≤ n), we have that 

B ∩
⋂

i,j≤n

Aj
i �= ∅.

We know such F(X ,k) exists by Lemma 54. The proof now proceeds in a very similar 
way as the proof of Proposition 53. We define π a strategy for player I in GP -point (W)
as follows:

1. Player I starts by playing W0 = σ (∅).
2. Assume player II plays z0 ∈ [W0]<ω. Let p0 = σ (W0, z0), s0 be the stem of p0

and X0 = {spsucp0 (s0)}. Define n0 > d−1 (s0) to be the least integer such that 
d−1(s0

�t) < n0 for all t ∈ F(X0,0) (spsucp0 (s0)). Player I will play (in GP -point (W)) 
W1 = σ (W0, z0, p0, n0).

3. In general assume that it has been played the sequence 〈W0, z0, ...,Wm〉. At the same 

time, secretly the player I has been constructing a sequence 〈W0, z0, p0, n0, W1, z1, p1,

n1..., Wm〉 that is being forced to be a partial play of the game H(W, U̇gen) following 

σ, such that for every i < m, the integer ni has the following property: letting Xi

to be the set defined as {spsucpi
(u) | u ∈ T (pi, ni−1)} (where ni−1 = d−1 (s0)), 

for every t ∈ F(Xi,i) (spsucpi
(u)), we have that d−1(u�t) < ni. Assume that 

player II plays zm as her next response in H
(
W, U̇gen

)
. Let pm be the tree given 

by σ (W0, z0, n0,W1, ...,Wm, zm) and let nm > nm−1 be the least integer with 

the following property: letting Xm = {spsucpm
(u) | u ∈ T (pm, nm−1)}, for ev-

ery t ∈ F(Xm,m) (spsucpm
(u)), we have that d−1(u�t) < nm. Player I will play 

Wm+1 = σ (W0, z0, n0,W1, ...,Wm, zm, pm, nm).
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The game GP -point (W):

I W0 W1 ...

II z0 z1

The game H(W, U̇gen):

I W0 p0 W1 p1 ...

II z0 n0 z1 n1

We claim that π is a winning strategy for player I in GP -point (W). Consider a run of 
the game in which player I played according to π. Let Z =

⋃
n∈ω

zn, we will prove that 

Z /∈ U . Let q =
⋃
i∈ω

T (pi, ni) be the tree that was constructed by player I during the play. 

It is easy to see that F∪{C (spsucq (s)) | s ∈ split (q)} generates an Fσ-filter, call it K. 
Note that K ≤ F hence K forces that σ is a winning strategy for player I in H(W, U̇gen). 
Moreover, K forces that q ∈ PT (U̇gen). Since player I is forced to win in H(W, U̇gen), 
it must be the case that Z /∈ W. This shows that π is a winning strategy for player I
in GP -point (W). Since player I can not have a winning strategy in the P -point game, we 
get a contradiction. �

In this way, we conclude that Fσ ∗ PT (U̇gen) preserves all ground model P -points. 
Note that after forcing with Fσ ∗ PT (U̇gen), there are intermediate extensions with P -
points that are not preserved (Ugen for example), however, all ground model P -points 
are preserved. By iterating Fσ ∗ PT (U̇gen) with countable support, we get the following 
result [7]:

Corollary 56 (Blass-Shelah). The inequality u < s is consistent with ZFC.

In [48] Mildenberger proved the following interesting result:

Proposition 57 (Mildenberger). It is consistent that there is a proper forcing that diago-
nalizes an ultrafilter and preserves a P -point.

Note that our work provides an alternative proof of the theorem of Mildenberger.
We would like to mention that in original model of Shelah of b < s, in the Blass-Shelah 

model, and in our model, the almost disjointness number is equal to ω1. In [58] (using also 
the results from [15]) it is proved that a = ω1 after iterating (with countable support) 
the forcing Fσ ∗M(U̇gen). A similar approach works when iterating Fσ ∗ PT (U̇gen). It is 
also possible to use the technique of theorem 6.6 in [52] to show that ♦ (b) holds in that 
model, hence a = ω1 (see [52] for the definition of ♦ (b) and the proof that ♦ (b) implies 
a = ω1). Since this result will not be used in the paper, we omit the details.

Regarding the groupwise-density number g, it can be proved that g = ω2 holds in our 
model. In particular, this is a model of u < g, so the Near Coherence of Filters principle 
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holds in our model. This was proved by David Chodounský, Jonathan Verner and the 
first author and will be published in a consequent paper. The reader may consult [5] to 
learn more about g and the Near Coherence of filters principle.

6. A model of ω1 = u < a

In this section, we will prove that every MAD family can be destroyed with a proper 
forcing that preserves P -points, answering the questions of Brendle and Shelah. First, 
we will prove that if A is a MAD family, then U̇gen (A) is forced to be B-Canjar for every 
b-family B in the ground model. In [15] and [28] it is proved that after adding ω1-Cohen 
reals, Fσ (A) forces that Ugen (A) has these properties. Obviously, we can not use these 
results since we do not want to add Cohen reals. In this section, we will prove that the 
Cohen reals were really not needed in the first place. This proof takes inspiration in 
the proof of b < a by Brendle in [8]. When the authors were preparing the paper, they 
learned from Zdomskyy that he has found a different proof that the preliminary Cohen 
reals are not needed.

Definition 58. We say a MAD family A is a Laflamme family if I (A) can not be extended 
to an Fσ ideal (or equivalently, I (A)∗ can not be extended to an Fσ-filter).

Laflamme proved that the Continuum Hypothesis implies that there is a Laflamme
MAD family. Minami and Sakai constructed a Laflamme MAD family assuming p = c. It 
is a major open problem if ZFC implies the existence of Laflamme MAD families. The 
reader may consult [42] and [51] for more information on Laflamme MAD families.

Note that if A is not Laflamme (i.e. A can be extended to an Fσ-ideal), then Fσ ∗
PT (U̇gen) destroys A below some condition, in this way, we only need to take care of 
Laflamme families. The following is a simple lemma that will be needed later:

Lemma 59. Let A be a MAD family and F ∈ Fσ (A). If there is a proper forcing P
such that P forces the following statement: “There is D ∈ [A]ω such that I (A)∗ ⊆
〈F∪{ω \A | A ∈ D}〉” then A is not Laflamme.

Proof. Since P is a proper forcing, we can find a condition p ∈ P and D1 ∈ [A]ω in V
such that p � “Ḋ ⊆ D1”. It is then easy to see that I (A)∗ ⊆ 〈F∪{ω \A | A ∈ D1}〉 so 
A is not Laflamme. �

Given X ⊆ [ω]<ω and A ∈ [ω]ω, we define Catch (X,A) = {s ∈ X | s ⊆ A}. We will 
need the following definition:

Definition 60. Let F be an Fσ-filter, X ⊆ [ω]<ω and A ∈ [ω]ω. We will say that 
� (F , X,A) holds, if the following conditions are satisfied:

1. A ∈ F+.
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2. If B ∈ [A]ω ∩ F+ then Catch (X,B) ∈ (F<ω)+ (i.e. for every F ∈ F there is s ∈ X

such that s ⊆ F ∩B).

Let A be a MAD family, F ∈ Fσ (A) and X ⊆ [ω]<ω such that C (X) ⊆
〈
F ∪ I (A)∗

〉
. 

Fix 〈Cn〉n∈ω an increasing family of compact sets such that F =
⋃
Cn. The Brendle 

game9 BR (A,F , X) is defined as follows,

I Y0 Y1 Y2 · · ·
II s0 s1 s2 · · ·

Where Ym ∈ I (A)∗, sm ∈ [Ym]<ω intersects all the elements of Cm and max (sm)
< min (sm+1).10 Player I wins the game if 

⋃
n∈ω

sn contains an element of X. Note that 

this is an open game for I, i.e., if she wins, then she wins already in a finite number of 
steps. By the Gale-Stewart theorem (see [39]), the Brendle game is determined. We will 
now prove the following:

Proposition 61. Let A be a Laflamme MAD family and F ∈ Fσ (A). For every family 
{Xn | n ∈ ω} such that C (Xn) ⊆

〈
F ∪ I (A)∗

〉
, there is a countable family D ∈ [A]ω

such that � (F , A,Xn) holds for every n ∈ ω and A ∈ D.

Proof. By V [Cα] we denote an extension of V by adding α-Cohen reals (the reader 
should not be worried by the use of Cohen reals in the proof, see the paragraph after 
this result for more information). We first claim the following:

Claim 62. If X ⊆ [ω]<ω is such that C (X) ⊆
〈
F ∪ I (A)∗

〉
, then in V [Cω1 ] the player I

has a winning strategy for BR (A,F , X).

We will prove the claim by contradiction, since BR (A,F , X) is determined, we assume 
that II has a winning strategy, call it π. We will choose a tree T ⊆

(
[ω]<ω)<ω and a family 

{Bt | t ∈ T} ⊆ I (A)∗ with the following properties:

1. ∅ ∈ T and B∅ = ω (this is just a technical step).
2. If t = 〈s0, s1, ..., sn〉 ∈ T then 

〈
B〈s0〉, s0, B〈s0,s1〉, s1, ..., B〈s0,s1,...,sn〉, sn

〉
is a legal 

partial play of BR (A,F , X) in which Player II is using her strategy π.

An important remark is in order here: Note that for example, for every s ∈ [ω]<ω

there may be infinitely many B ∈ I (A)∗ such that 〈B, s〉 is a legal partial play of 
BR (A,F , X) in which Player II is using her strategy π. For B〈s〉 we just choose and fix 
one of them. The tree T and {Bt | t ∈ T} are recursively constructed as follows:

9 This game was based on the rank arguments used by Brendle in [8]. A similar (but different) approach 
using games was used by Brendle and Taylor in [17].
10 Note that the game BR (A,F, X) does not only depend on F , but on its representation as an increasing 
union of compact sets. A more formal notation would be BR(A, 〈Cn〉n∈ω , X).
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1. ∅ ∈ T and B∅ = ω.
2. T1 is the set of all 〈s〉 such that s ∈ [ω]<ω and there is B ∈ I (A)∗ for which 〈B, s〉

is a legal partial play of BR (A,F , X) in which Player II is using her strategy π.
3. For every s such that 〈s〉 ∈ T1, we choose Bs ∈ I (A)∗ for which 〈Bs, s〉 is a legal 

partial play.
4. Given a node t = 〈s0, s1, ..., sn〉 ∈ T (and we know that the sequence 

〈
B〈s0〉,

s0, B〈s0,s1〉, s1, ..., B〈s0,s1,...,sn〉, sn
〉

is a legal partial play) let sucT (t) be the set of 
all z ∈ [ω]<ω for which there is B ∈ I (A)∗ such that 〈B〈s0〉, s0, B〈s0,s1〉, s1, ...,
B〈s0,s1,...,sn〉, sn, B, z〉 is a legal partial play (in which Player II is using her strategy 
π). We fix Bt�〈z〉 ∈ I (A)∗ with this property.

Note that if t = 〈s0, s1, ..., sn〉 ∈ T , then 
⋃
i≤n

si does not contain an element of X, this 

is because π is a winning strategy for player II. Clearly T is a countable tree with no 
isolated branches, so it is equivalent to Cohen forcing when viewed as a forcing notion. 
Since T is countable, it appears in an intermediate extension of V [Cω1 ]. Let β < ω1 such 
that T ∈ V [Cβ ].

Given Y ∈ I (A)∗ define the set DY of all t = 〈s0, s1, ..., sn〉 ∈ T such that there is 
i ≤ n for which si ⊆ Y . It is easy to see that each DY is an open dense subset of T . Let 
G ∈ V [Cω1 ] be a (T, V [Cβ ])-generic branch through T . It is easy to see that G induces 
a legal play of the game in which II followed her strategy. Let D =

⋃
G, and since π

is a winning strategy for II, we conclude that D does not contain an element of X. By 
genericity D ∈

〈
I (A)∗ ∪ F

〉+ however, ω\D ∈ C (X) ⊆
〈
I (A)∗ ∪ F

〉
which is obviously 

a contradiction. This finishes the proof of the claim.
We work in V [Cω1 ], where player I has winning strategies for all of the games 

BR (A,F , Xn) with n ∈ ω. Let πn be the winning strategy for the game BR (A,F , Xn). 
Let W be set of elements of I (A)∗ that may be played by I following her winning strat-
egy in any of these games. It is not hard to see that W is countable. Note that if W ∈ W
then W almost contains every element of A except for finitely many (this is because 
W ∈ I (A)∗). Let A′ ⊆ A be the set of all A ∈ A for which there is W ∈ W such 
that A �∗ W . Note that A′ is countable. Since A is Laflamme in V , by a previous 
lemma, I (A)∗ it is not contained in 〈F∪ {ω \B | B ∈ A′}〉, so there is A0 ∈ A such 
that ω \A0 /∈ 〈F∪{ω \B | B ∈ A′}〉. This implies that A0 ∈ F+ and A0 is almost con-
tained in every member of W. We claim that � (F , A0, Xn) holds for each n ∈ ω. Let 
B ∈ ℘ (A0) ∩ F+ we will now show that Catch (Xn, B) is positive for each n ∈ ω. Let 
F ∈ F and consider the following play in BR (A,F , Xn),

I W0 W1 W2 · · ·
II s0 s1 s2 · · ·

where the Wi are played by I according to πn, si ∈ [B ∩ F ]<ω and intersects every 
element of Ci. This is possible since B ∩ F is positive and is almost contained in 
every Wn. Since πn is a winning strategy, this means that I wins the game, which 
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entails that 
⋃

sn ⊆ B ∩ F contains an element of Xn. We can then obtain each 
An+1 by repeating the same argument and using that I (A)∗ it is not contained in 
〈F∪ {ω \B | B ∈ A′} ∪ {ω \A0, .., ω \An}〉. Let D1 = {An | n ∈ ω}.

We know that V [Cω1 ] |= � (F , An, Xm) for every n, m ∈ ω. However, it is easy to see 
that the statement � (F , An, Xm) is absolute between models of ZFC (in fact, we only 
need that it is downwards absolute, which is easy). So V |= � (F , An, Xm) for every 
n, m ∈ ω. Since Cω1 has the countable chain condition, there is D ∈ [A]ω such that 
Cω1 � “D1 ⊆ D”. By the previous remark, we may assume that that � (F , A,Xn) holds 
for every n ∈ ω and A ∈ D. �

The reader might feel that we cheated in the previous proof by adding the Cohen 
reals, and sincerely, we have, but it was a “legal cheating”. We only used the Cohen reals 
to find ground model objects, and after finding them, we came back to the ground model 
as if nothing happened.

Given A ∈ [ω]ω and l ∈ ω define Partl (A) as the set of all sequences 〈B1, ..., Bl〉 such 
that A =

⋃
i≤l

Bi and Bi∩Bj = ∅ whenever i �= j. Note that Partl (A) is a compact space 

with the natural topology. Also it is clear that if A ∈ F+ and 〈B1, ..., Bl〉 ∈ Partl (A)
then there is j ≤ l such that Bj ∈ F+.

Lemma 63. Let F be a filter, C ⊆ F a compact set and X ∈ (F<ω)+. Let A such 
that � (A,F , X) holds and let l ∈ ω. There is n ∈ ω with the property that for all 
〈B1, ..., Bl〉 ∈ Partl (A) there is i ≤ l such that if F ∈ C then X ∩ ℘ (Bi ∩ n) contains a 
subset of F .

Proof. Let Un be the set of all 〈B1, ..., Bl〉 ∈ Partl (A) such that there is i ≤ l with the 
property that if F ∈ C then X∩℘ (Bi ∩ n) contains a subset of F . Note that {Un | n ∈ ω}
is an open cover (recall that � (A,F , X) holds and if we split A into finitely many 
pieces, then one of the pieces must be in F+) and the result follows since Partl (A) is 
compact. �

We will now prove the following:

Proposition 64. Let F be a filter, C ⊆ F a compact set, X ∈ (F<ω)+, A ∈ [ω]ω such 
that � (A,F , X) holds and l ∈ ω. There is Y ∈ [X]<ω such that if C1, ..., Cl ∈ C (Y ) and 
F ∈ C then there is s ∈ Y ∩ [A]<ω such that s ⊆ C1 ∩ ... ∩ Cl ∩ F .

Proof. Let n such that for every 〈B1, ..., B2l〉 ∈ Part2l (A) and for every F ∈ C there is 
j ≤ 2l for which X ∩ ℘ (Bj ∩ n) contains a subset of F . Let Y = X ∩ ℘ (l), we will see 
that Y has the desired properties. Let C1, ..., Cl ∈ C (Y ) and F ∈ C. For every s : l −→ 2
define Bs as the set of all a ∈ A such that a ∈ Ci if and only if s (i) = 1. Clearly 
〈Bs〉s∈2l ∈ Part2l (A) and we may conclude that there is s such that Y ∩ ℘ (Bs ∩ n)
contains an element of F . Since C1, ..., Cl ∈ C (Y ) we conclude that s must be the 
constant function 1, and this entails the desired conclusion. �
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We can then finally conclude the following:

Proposition 65. If A is a Laflamme MAD family, then Fσ (A) forces that U̇gen (A) is 
B-Canjar for every b-family B in the ground model.

Proof. It is enough to show that if F � “X = 〈Xn〉n∈ω ⊆ (U̇gen (A)<ω)+” then there is 
G ≤ F and f ∈ B such that C

(
Xf

)
⊆ G. Let F =

⋃
Cn where each Cn is compact and 

they form an increasing chain. By the previous results, we may find {An | n ∈ ω} ⊆ A
such that � (An,F , Xm) holds for every n, m ∈ ω. We can then find an increasing 
function g : ω −→ ω such that the following holds:

*) For every n ∈ ω and for every i ≤ n, if Y = X ∩ ℘ (g (n)) then for every 
C0, ..., Cn ∈ C (Y ) and F ∈ Cn there is s ∈ Y ∩ [Ai]<ω such that s ⊆ C0 ∩ ... ∩
Cl ∩ F .

Since B is unbounded, we can find f ∈ B that is not dominated by g. It is easy to see 
that G =

〈
F ∪ C

(
Xf

)〉
is a condition in Fσ (A) and has the desired properties. �

We can conclude:

Corollary 66. Every MAD family can be destroyed with a forcing that is proper, adds an 
unsplit real, preserves all b-families from the ground model and does not add Cohen reals.

Proof. If A is not Laflamme, then it can be destroyed by Fσ ∗ PT (U̇gen) (below some 
condition). If A is Laflamme, then we can destroy it with Fσ (A) ∗ PT (U̇gen (A)). �

By iterating the forcings in the previous corollary, we get the following:

Proposition 67 (Shelah). There is a model of ω1 = b < a = s = c = ω2.

Note that if we iterate with countable support forcings of the type Fσ (A)∗M(U̇gen (A))
and Fσ ∗M(U̇gen), we will get a model of ω1 = b < a = s = cov(M) = c = ω2. In order 
to preserve P -points, we must use the Miller forcing instead of the Mathias forcing, as 
we are going to show now. We will prove that for every MAD family A, the forcing 
Fσ (A) ∗ PT (U̇gen (A) ) preserves all ground model P -points. We will need the following 
generalization of Lemma 63:

Lemma 68. Let l ∈ ω, F a filter, D ⊆ F a compact set, X1, ..., Xn ⊆ [ω]<ω \ {∅} such 
that C (X1) , ..., C (Xn) ⊆ F and A ∈ [ω]ω such that � (A,F , Xi) holds for every i ≤ n. 
There is m ∈ ω such that for every 〈B1, ..., Bl〉 ∈ Partl (A), there is i ≤ l such that for 
every F ∈ D and for every k ≤ n, the set (Bi ∩ F ) ∩m contains an element of Xk.
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Proof. Let Um be the set of all 〈B1, ..., Bl〉 ∈ Partl (A) such that there is i ≤ l with the 
property that if F ∈ C and k ≤ n then, Xk ∩ ℘ (Bi ∩m) contains a subset of F . Note 
that {Un | n ∈ ω} is an open cover and the result follows since Partl (A) is compact. �

With this result, we can prove the following generalization of Lemma 64:

Lemma 69. Let F be a filter, D ⊆ F a compact set, X1, ..., Xn ⊆ [ω]<ω such that 
C (X1) , ..., C (Xn) ⊆ F and A ∈ [ω]ω such that � (A,F , Xi) holds for every i ≤ n. 
There are Y1 ∈ [X1]<ω

, ..., Yn ∈ [Xn]<ω such that for every F ∈ D and for every 
C1

i , ..., C
n
i ∈ C (Yi) (with i ≤ n), for every k ≤ n there is s ∈ Yk ∩ [A]<ω such that 

s ⊆ F ∩
⋂

i,j≤n

Cj
i .

Proof. Let l = n2 and by Lemma 68, we know there is m ∈ ω such that for every 
〈B1, ..., B2l〉 ∈ Part2l (A) there is i ≤ 2l such that for every F ∈ D and for every k ≤ n, 
the set (Bi ∩ F )∩m contains an element of Xk. Let Yi = Xi ∩℘ (m) for every i ≤ n. We 
will see that the sets Y1, ..., Yn have the desired properties. Let C1

i , ..., C
n
i ∈ C (Yi) (with 

i ≤ n) and F ∈ C. For every s : n × n −→ 2 define Bs as the set of all a ∈ A such that 
a ∈ Cj

i if and only if s (i, j) = 1. Clearly 〈Bs〉s∈2l ∈ Part2l (Al) and we may conclude 
that there is s : n ×n −→ 2 such that Yi∩℘ (Bs ∩m) contains an element of F for every 
i ≤ n. Since C1

i , ..., C
n
i ∈ C (Yi) we conclude that s must be the constant function 1, and 

this entails the desired conclusion. �

We can now prove the following result, which is a combination of Proposition 55 and 
Proposition 65:

Proposition 70. If W is a P -point and A is a Laflamme MAD family, then Fσ (A) forces 
that U̇gen (A) is W-Canjar.

Proof. We will prove the proposition by contradiction. Assume there is F ∈ Fσ (A) and 
σ such that F forces that σ is a winning strategy for player I in H(W, U̇gen (A)). Since 
strategies for player I are countable objects and since Fσ (A) is σ-closed, it is enough 
to consider ground model strategies. Let F =

⋃
n∈ω

Cn where 〈Cn〉n∈ω is an increasing 

sequence of compact sets. We will use σ to construct a winning strategy for player I in 
the game GP -point (W), which will be a contradiction.

Let L be the collection of all ps such that p is a possible response of player I according 
to σ and s ∈ split (p). In the same way as in the proof of Proposition 55, if ps ∈ L, then 
F � “spsucp (s) ∈ (U̇<ω

gen)+”, hence in particular C (spsucp (s)) ⊆
〈
F ∪ I (A)∗

〉
. Since L is 

countable we may assume (by extending F if necessary) that C (spsucp (s)) ⊆ F for every 
ps ∈ L. By 61, we can find a family {An | n ∈ ω} ⊆ A such that � (An,F , C (spsucp (s)))
holds for every n ∈ ω and ps ∈ L.

For every X = {X1, ..., Xn} ∈ [{spsucp (s) | p ∈ L ∧ s ∈ split (p)}]<ω and for every 
k ∈ ω, fix a function F(X ,k) : X −→ [[ω<ω]]<ω with the following properties:
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1. Yi = F(X ,k) (Xi) ∈ [Xi]<ω for every i ≤ n.
2. For every B ∈ Ck, for every C1

i , ..., C
n
i ∈ C (Yi) (with i ≤ n) and for every k1, k2 ≤ n, 

we have that B ∩
⋂

i,j≤n

Cj
i contains an element of Yk1 ∩ [Ak2 ]

<ω.

We know such F(X ,k) exists by the previous lemma. The proof now proceeds in a very 
similar way as the proof of 55. We define π a strategy for player I in GP -point (W) as 
follows:

1. Player I starts by playing W0 = σ (∅).
2. Assume player II plays z0 ∈ [W0]<ω. Let p0 = σ (W0, z0), s0 be the stem of p0

and X0 = {spsucp0 (s0)}. Define n0 > d−1 (s0) to be the least integer such that 
d−1(s0

�t) < n0 for all t ∈ F(X0,0) (spsucp0 (s0)). Player I will play (in GP -point (W)) 
W1 = σ (W0, z0, p0, n0).

3. In general, assume that it has been played the sequence 〈W0, z0, ...,Wm〉. At the same 
time, the player I has secretly been constructing a sequence 〈W0, z0, p0, n0, W1, z1, p1,

n1..., Wm〉 that is being forced to be a partial play of the game H(W, U̇gen (A) )
following σ such that for every i < m, the integer ni has the following im-
portant property: letting Xi = {spsucpi

(u) | u ∈ T (pi, ni−1)} (we define n−1 =
d−1 (s0)), for every t ∈ F(Xi,i) (spsucpi

(u)), we have that d−1(u�t) < ni. As-
sume that player II plays zm as her next response in H(W, U̇gen (A)). Let pm
be the tree σ (W0, z0, n0,W1, ...,Wm, zm) and let nm > nm−1 the least integer 
with the following property: letting Xm = {spsucpm

(u) | u ∈ T (pm, nm−1)}, for ev-
ery t ∈ F(Xm,m) (spsucpm

(u)), we have that d−1(u�t) < nm. Player I will play 
Wm+1 = σ (W0, z0, n0,W1, ...,Wm, zm, pm, nm).

The game GP -point (W):

I W0 W1 ...

II z0 z1

The game H(W, U̇gen (A)):

I W0 p0 W1 p1 ...

II z0 n0 z1 n1

We claim that π is a winning strategy for player I in GP -point (W). Consider a run of 
the game in which player I played according to π. Let Z =

⋃
n∈ω

zn, we will prove that 

Z /∈ U . Let q =
⋃
i∈ω

T (pi, ni) be the tree that was constructed by player I during the play. 

It is easy to see that F∪{C (spsucq (s)) | s ∈ split (q)} generates a condition of Fσ (A), 
call if K. Note that K ≤ F hence K forces that σ is a winning strategy for player I in 
H(W, U̇gen). Moreover, K forces that q ∈ PT (U̇gen (A)). Since player I is forced to win 
in H(W, U̇gen (A)), it must be the case that Z /∈ W. This shows that π is a winning 
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strategy for player I in GP -point (W). Since player I can not have a winning strategy in 
the P -point game, we get a contradiction. �

We can now answer the questions of Brendle and Shelah:

Theorem 71. Every MAD family can be destroyed with a proper forcing that preserves all 
P -points from the ground model. In particular, it is consistent that ω1 = u < a = ω2.

7. MAD families build up from closed sets

The closed almost disjointness number was introduced by Brendle and Khomskii in 
[14]. The invariant aclosed is defined as the smallest number of closed sets of [ω]ω such 
that its union is a MAD family. Since singletons are closed, it follows that aclosed ≤ a

and it is uncountable by a result of Mathias (see [44] or [61]). The following are some 
known results regarding this cardinal invariant:

Proposition 72.

1. (Raghavan, Törnquist independently) p ≤ aclosed (see [61]).
2. (Brendle and Khomskii) It is consistent that aclosed < b (see [14] and [15]).
3. (Brendle and Raghavan) It is consistent that b < aclosed (see [15]).
4. (Raghavan and Shelah) d = ω1 implies aclosed = ω1 (see [54] and [15]).

There are still many interesting open questions regarding aclosed. The following prob-
lems are still open:

Problem 73 (Raghavan). Does h ≤ aclosed?

Problem 74 (Brendle, Khomskii). Does s = ω1 imply aclosed = ω1?

The reader may consult [14] or [15] for more information and open problems regarding 
aclosed. If D ⊆ [ω]ω is an AD family, we denote its orthogonal D⊥ as the set of all B ⊆ ω

that are almost disjoint with every element of D.
As mentioned before, Brendle and Raghavan proved that it is consistent that 

b < aclosed. In fact, they build two models in which this inequality holds. One is us-
ing the creature forcing of Shelah and another was using a c.c.c. forcing, similar to the 
model constructed in [8]. In both cases, their forcings add Cohen reals. We will com-
bine their results with ours to build a model of b < aclosed without adding Cohen reals, 
moreover; this inequality holds in the model constructed in the previous section. The 
key result is the following proposition, which was implicitly proved in the Lemma 7 of 
[15]:
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Proposition 75 (Brendle, Raghavan). Let D ⊆ [ω]ω be a closed AD family. If U is a 
P -point such that D ∩ U = ∅, then there is U ∈ U ∩ D⊥.

Proof. Note that if D ∩ U = ∅ then I (D) ∩ U = ∅ since U is an ultrafilter. We argue 
by contradiction, assume that U ∩ D⊥ = ∅. Note that this implies that for every B ∈ U
there are {An | n ∈ ω} ⊆ D such that |B ∩An| = ω for every n ∈ ω. Consider the 
Laver forcing L (U). Since I (D) is an analytic set, by a result of Blass (see [4]), there is 
p ∈ L (U) such that either [p] ⊆ I (D) or [p] ∩ I (D) = ∅. Since U is a P -point, we can 
find q ≤ p and U ∈ U such that sucq (s) =∗ U for every s ∈ q such that s extends the 
stem of q.

Let {An | n ∈ ω} ⊆ D such that An ∩ U is infinite for every n ∈ ω. On one hand, 
we can find a branch f0 ∈ [q] such that im (f0) ⊆ A0, so im (f0) ∈ I (D), but on the 
other hand, we can find f1 ∈ [q] such that im (f1) ∩ An is infinite for every n ∈ ω, so 
im (f1) /∈ I (D). These two statements are in contradiction since we know that either 
[q] ⊆ I (D) or [q] ∩ I (D) = ∅. �

We can now conclude the following:

Corollary 76. Let A =
⋃
α∈κ

Cα be a MAD family such that each Cα is a closed subset of 

[ω]ω. Let U be a P -point such that A ∩U = ∅. If P is a forcing that diagonalizes U , and 
G ⊆ P is a generic filter, then V [G] |= “AV [G] =

⋃
α∈κ

CV [G]
α is not a MAD family” (where 

CV [G]
α is the reinterpretation of Cα in the model V [G]).

Proof. Let G ⊆ P be a generic filter. We argue in V [G]. Let B ∈ [ω]ω be a pseudointer-
section of U . We claim that B is almost disjoint with AV [G]. By the previous result, for 
every α < κ there is Uα ∈ U such that the following statement holds in V : “Uα is almost 
disjoint with every element of Cα”. Since Cα is a closed set, this is an absolute statement, 
so Uα is almost disjoint with every element of CV [G]

α . Furthermore, since B ⊆∗ Uα, then 
B is also almost disjoint with every element of CV [G]

α for every α < κ, hence B is almost 
disjoint with AV [G]. �

In [18] it was proved that Canjar ultrafilters are P -points (moreover, Canjar ultrafilters 
are precisely the “strong P -points”, see [6] for the definition of strong P -point). In this 
way, we can conclude the following:

Corollary 77. The following statements are consistent with the axioms of ZFC:

1. (Brendle, Raghavan) ω1 = b < aclosed = cov(M) = c = ω2.
2. ω1 = u < aclosed = ω2.
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8. Open problems

We will list some open problems the authors do not know how to answer. Regarding the 
forcings Q (F) of Sabok and Zapletal, we know that they might or might not diagonalize 
F . It would be interesting to know the answer of the following:

Problem 78. Is there a nice combinatorial characterization for the filters F for which 
Q (F) diagonalizes F?

The forcings M (F) and L (F) have been proven to be very useful (see for example 
[38], [53], [21], [36], [22] or [13] for some applications of this forcings). We expect the 
forcings PT (F) to have interesting applications as well. It would then be useful to have 
a deeper understanding of such forcings. For example we have the following:

Problem 79. Let F be a filter.

1. Is there a combinatorial characterization of when PT (F) does not add Cohen reals?
2. Is there a combinatorial characterization of when PT (F) does not add dominating 

reals?
3. Is there a filter F such that PT (F) does not add dominating reals but M (F) adds 

dominating reals?

It would be interesting if the previous properties have characterizations in terms 
of the Katětov order, similar to the results for Q (F) obtained in [55]. Regarding the 
preservation of P -points, we have the following:

Problem 80.

1. Let U be a P -point and F a Canjar filter such that PT (F) forces that U generates 
a non-meager filter. Does PT (F) preserve U?11

2. Assuming CH, is there a Canjar filter F such that PT (F) destroys all P -points?

Regarding half-Cohen reals, we do not know the answer of the following questions:

Problem 81. If P does not add half-Cohen reals and P � “Q̇ does not add half-Cohen 
reals”, is it true that P ∗ Q̇ does not add half-Cohen reals?

Problem 82. If δ is a limit ordinal, 〈Pα, Ṙα | α < δ〉 is a countable support iteration of 
proper forcings such that each Pα does not add half-Cohen reals, is it true that Pδ does 
not add half-Cohen reals? What if each Pα does not add dominating reals?

11 This question was recently answered positively by Chodounský, Verner and the first author. This result 
will be published in another article.
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Recall that not adding Cohen reals is not preserved under two step iteration by the 
result of Zapletal in [63].
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[26] V. Fischer, J. Steprāns, The consistency of b = κ and s = κ+, Fundam. Math. 201 (3) (2008) 
283–293.

[27] V. Fischer, A. Törnquist, Template iterations and maximal cofinitary groups, Fundam. Math. 230 (3) 
(2015) 205–236.

[28] O. Guzmán, M. Hrušák, A. Martínez-Celis, Canjar filters II, in: Proceedings of the 2014 RIMS 
Meeting on Reflection Principles and Set Theory of Large Cardinals, 2014, pp. 59–67.

[29] O. Guzmán, M. Hrušák, A. Martínez-Celis, Canjar filters, Notre Dame J. Form. Log. 58 (1) (2017) 
79–95.

[30] L.J. Halbeisen, Combinatorial Set Theory: With a Gentle Introduction to Forcing, 1st edition, 
Springer, Berlin, 2017.

[31] R. Hernández-Gutiérrez, P.J. Szeptycki, Some observations on filters with properties defined by 
open covers, Comment. Math. Univ. Carol. 56 (3) (2015) 355–364.

[32] M. Hrušák, Combinatorics of filters and ideals, in: Set Theory and Its Applications, in: Contemp. 
Math., vol. 533, Amer. Math. Soc., Providence, RI, 2011, pp. 29–69.

[33] M. Hrušák, Almost disjoint families and topology, in: Recent Progress in General Topology. III, 
Atlantis Press, Paris, 2014, pp. 601–638.

[34] M. Hrušák, Katětov order on Borel ideals, Arch. Math. Log. 56 (7) (Nov 2017) 831–847.
[35] M. Hrušák, S. García Ferreira, Ordering MAD families a la Katětov, J. Symb. Log. 68 (4) (2003) 

1337–1353.
[36] M. Hrušák, H. Minami, Mathias-Prikry and Laver-Prikry type forcing, Ann. Pure Appl. Log. 165 (3) 

(2014) 880–894.
[37] M. Hrušák, J. Zapletal, Forcing with quotients, Arch. Math. Log. 47 (7–8) (2008) 719–739.
[38] M. Hrušák, U.A. Ramos-García, Malykhin’s problem, Adv. Math. 262 (2014) 193–212.
[39] A.S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, Springer-

Verlag, New York, 1995.
[40] M.S. Kurilić, Cohen-stable families of subsets of integers, J. Symb. Log. 66 (1) (2001) 257–270.
[41] C. Laflamme, Forcing with filters and complete combinatorics, Ann. Pure Appl. Log. 42 (2) (1989) 

125–163.
[42] C. Laflamme, Zapping small filters, Proc. Am. Math. Soc. 114 (2) (1992) 535–544.
[43] R. Laver, Products of infinitely many perfect trees, J. Lond. Math. Soc. (2) 29 (3) (1984) 385–396.
[44] A.R.D. Mathias, Happy families, Ann. Math. Log. 12 (1) (1977) 59–111.
[45] D.A. Mejía, Template iterations with non-definable ccc forcing notions, Ann. Pure Appl. Log. 

166 (11) (2015) 1071–1109.
[46] D.A. Mejía, Matrix iterations and Cichon’s diagram, Arch. Math. Log. 52 (3–4) (2013) 261–278.
[47] D. Meza, Ideals and filters on countable sets, PhD thesis, Universidad Autónoma de México, 2009.
[48] H. Mildenberger, Diagonalising an ultrafilter and preserving a p-point, Fundam. Math. 356 (2019) 

9–26.
[49] H. Mildenberger, Forcing with Fσ- and with summable filters, in: Set Theory: Recent Trends and Ap-

plications, in: Quad. Mat., vol. 17, Dept. Math., Seconda Univ. Napoli, Caserta, 2006, pp. 183–194.
[50] A.W. Miller, Rational perfect set forcing, in: Axiomatic Set Theory, Boulder, Colo., 1983, in: Con-

temp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 143–159.
[51] H. Minami, H. Sakai, Katětov and Katětov-Blass orders on Fσ-ideals, Arch. Math. Log. 55 (7–8) 

(2016) 883–898.
[52] J.T. Moore, M. Hrušák, M. Džamonja, Parametrized ♦ principles, Trans. Am. Math. Soc. 356 (6) 

(2004) 2281–2306.
[53] D. Raghavan, A model with no strongly separable almost disjoint families, Isr. J. Math. 189 (2012) 

39–53.
[54] D. Raghavan, S. Shelah, Comparing the closed almost disjointness and dominating numbers, Fun-

dam. Math. 217 (1) (2012) 73–81.
[55] M. Sabok, J. Zapletal, Forcing properties of ideals of closed sets, J. Symb. Log. 76 (3) (2011) 

1075–1095.

http://refhub.elsevier.com/S0001-8708(21)00244-9/bib9B70C29B74D382927EAE834B9CBFAD8Cs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib9B70C29B74D382927EAE834B9CBFAD8Cs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibE14F64A4A0C3EA73DB25B0E86B004397s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibE14F64A4A0C3EA73DB25B0E86B004397s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib31FC1E924E8458FF5FD4449764D212E9s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib31FC1E924E8458FF5FD4449764D212E9s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib51CF4E68627463C03CD4087980EBD88Es1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib51CF4E68627463C03CD4087980EBD88Es1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib850ADD3A01E7CB4A97C865AE5B7EEFE4s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib850ADD3A01E7CB4A97C865AE5B7EEFE4s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibFAD3F57E5404F20D096053335B66370Bs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibFAD3F57E5404F20D096053335B66370Bs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibEC5C878F1D0F5A591C4D35B0C0F552C4s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibEC5C878F1D0F5A591C4D35B0C0F552C4s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib478CC060865EA71E07AA154A08885715s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib478CC060865EA71E07AA154A08885715s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibA58AB0C1D0CA6A34C8B02C75B78755E0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibA58AB0C1D0CA6A34C8B02C75B78755E0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib9C9791133E9F0F02852DBA3A46E01B71s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib9C9791133E9F0F02852DBA3A46E01B71s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib9EFC94D99DE1614CCAE05F25F32D7817s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib9EFC94D99DE1614CCAE05F25F32D7817s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibB505B89DDD2E00B7132EA65B427060D0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibB505B89DDD2E00B7132EA65B427060D0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib0D87A73279EEAF2A31A8D6AFE5E59307s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibBBF1EFA71A64C806B0A96A7197E6A6B5s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibBBF1EFA71A64C806B0A96A7197E6A6B5s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib1DDED559BD081ECC7FCAD4535B315CABs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib1DDED559BD081ECC7FCAD4535B315CABs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib24580719F43E8B2F9B808CF7B112F090s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib83AB21B37E74F0DF79B9E4028EEB248Es1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib6C85FC2D0908B41A4670AD06D2E2B6D0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib6C85FC2D0908B41A4670AD06D2E2B6D0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib2D8ACF93497953D9C2EF5957797B0DFDs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibD520A926549B00F46F226CE54758BAE7s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibD520A926549B00F46F226CE54758BAE7s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib9E481710526AC659259655F57102E672s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib4E6C1EE6E3635E35D02510684897CAE4s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib446E9E1CC15B548A5F709BB7A2561935s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib47E934FB765F7D9929708736C321C35Ds1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib47E934FB765F7D9929708736C321C35Ds1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib605FD1B760AE432F9AB368799963917As1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib96ADD9705797341C02F7DFC922222EB4s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib84A95FF450192432C687AF9A28E20B11s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib84A95FF450192432C687AF9A28E20B11s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib88786E2418B7301A4B55B4B0F84D50FFs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib88786E2418B7301A4B55B4B0F84D50FFs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibECD331596F91DDAAC07C6E600ED166F1s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibECD331596F91DDAAC07C6E600ED166F1s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibC589A63D96803EEED3B3659ABE567B4Ds1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibC589A63D96803EEED3B3659ABE567B4Ds1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib0CF70DC3B94407278EEDAE89DCD92DE7s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib0CF70DC3B94407278EEDAE89DCD92DE7s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib9088EEED0978B84FCB26AFC3F45E76D0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib9088EEED0978B84FCB26AFC3F45E76D0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibE1CE7105E2B11257A259A3A914FE273Bs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibE1CE7105E2B11257A259A3A914FE273Bs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib83E5DC7FC6FE96C04A8D09E929C33BE8s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib83E5DC7FC6FE96C04A8D09E929C33BE8s1


O. Guzmán, D. Kalajdzievski / Advances in Mathematics 386 (2021) 107805 41
[56] M. Scheepers, Selection principles and covering properties in topology, Note Mat. 22 (2) (2003) 
3–41.

[57] S. Shelah, On cardinal invariants of the continuum, in: Axiomatic Set Theory, Boulder, Colo., 1983, 
in: Contemp. Math., vol. 31, Amer. Math. Soc., Providence, RI, 1984, pp. 183–207.

[58] S. Shelah, Proper and improper forcing, second edition, Perspectives in Mathematical Logic., 
Springer-Verlag, Berlin, 1998.

[59] S. Shelah, On what I do not understand (and have something to say). I, in: Saharon Shelah’s 
Anniversary Issue, Fundam. Math. 166 (1–2) (2000) 1–82.

[60] S. Shelah, Two cardinal invariants of the continuum (d < a) and FS linearly ordered iterated forcing, 
Acta Math. 192 (2) (2004) 187–223.

[61] A. Törnquist, Definability and almost disjoint families, Adv. Math. 330 (2018) 61–73.
[62] J. Zapletal, Forcing Idealized, Cambridge Tracts in Mathematics, vol. 174, Cambridge University 

Press, Cambridge, 2008.
[63] J. Zapletal, Dimension theory and forcing, Gen. Topol. Appl. 167 (2014) 31–35.
[64] J. Zapletal, Preserving P -points in definable forcing, Fundam. Math. 204 (2) (2009) 145–154.

http://refhub.elsevier.com/S0001-8708(21)00244-9/bib8BE74552DF93E31BBDD6B36ED74BDB6As1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib8BE74552DF93E31BBDD6B36ED74BDB6As1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib82E8326BBC6AB5AB44723B2F72F686C9s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib82E8326BBC6AB5AB44723B2F72F686C9s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib67F9B518306D5269A201CB95D3F67559s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib67F9B518306D5269A201CB95D3F67559s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib432BF72D8E707E837A1686664C107367s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib432BF72D8E707E837A1686664C107367s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibDE6126FF9CE292D5A0E2B7723905F8B0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibDE6126FF9CE292D5A0E2B7723905F8B0s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib65CD21EC9F887F649B7598E3B1BCFC48s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib2E4BB5DBD1E3F0A5FB5A6A672D5E75CCs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib2E4BB5DBD1E3F0A5FB5A6A672D5E75CCs1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bib725888B655D3241959BFFC89442A2549s1
http://refhub.elsevier.com/S0001-8708(21)00244-9/bibC0E4B3518F59754AB96EECBDA2BBF934s1

	The ultrafilter and almost disjointness numbers
	1 Introduction
	2 Preliminaries and notation
	3 Miller forcing based on filters
	4 Preservation of P-points
	5 A model of ω1=u<s
	6 A model of ω1=u<a
	7 MAD families build up from closed sets
	8 Open problems
	Acknowledgment
	References


